manuscripta mathematica

, Volume 156, Issue 3–4, pp 273–298 | Cite as

Cannibalistic classes of string bundles



We introduce cannibalistic classes for string bundles with values in TMF with level structures. This allows us to compute the Morava E-homology of any map from the bordism spectrum MString to TMF with level structures.

Mathematics Subject Classification

Primary 55N34 Secondary 57R20 55N22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, J.F.: On the groups \(J(X)\). III. Topology 3, 193–222 (1965)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ando, M., Hopkins, M.J., Rezk, C.: Multiplicative orientations of \(KO\)-theory and of the spectrum of topological modular forms, unpublished (2010)Google Scholar
  3. 3.
    Ando, M., Hopkins, M.J., Strickland, N.P.: Elliptic spectra, the Witten genus and the theorem of the cube. Invent. Math. 146(3), 595–687 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ando, M., Strickland, N.P.: Weil pairings and Morava \(K\)-theory. Topology 40(1), 127–156 (2001)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Atiyah, M.F.: \(K\)-theory and reality. Q. J. Math. Oxf. Ser. (2) 17, 367–386 (1966)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Beaudry, A.: The algebraic duality resolution at \(p = 2\). Algebr. Geom. Topol. 15(6), 3653–3705 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Beaudry, A.: Towards the homotopy of the \(K(2)\)-local Moore spectrum at \(p=2\). Adv. Math. 306, 722–788 (2017)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bott, R.: A note on the \(KO\)-theory of sphere-bundles. Bull. Am. Math. Soc. 68, 395–400 (1962)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Douglas, C.L., Francis, J., Henriques, A., Hill, M.A. (eds.): Topological Modular Forms, Mathematical Surveys and Monographs, vol. 201. American Mathematical Society, Providence (2014)Google Scholar
  10. 10.
    Devinatz, Ethan S., Hopkins, Michael J.: The action of the Morava stabilizer group on the Lubin–Tate moduli space of lifts. Am. J. Math. 117(3), 669–710 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Franke, J.: On the construction of elliptic cohomology. Math. Nachr. 158, 43–65 (1992)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Goerss, P.G.: Topological modular forms [after Hopkins, Miller and Lurie], Astérisque (2010), no. 332, Exp. No. 1005, viii, 221–255, Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011Google Scholar
  13. 13.
    Hu, P., Kriz, I.: Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence. Topology 40(2), 317–399 (2001)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Henn, H.W., Karamanov, N., Mahowald, M.: The homotopy of the \(K(2)\)-local Moore spectrum at the prime 3 revisited. Math. Z. 275(3–4), 953–1004 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hopkins, M., Lurie, J.: Ambidexterity in K(n)-local stable homotopy theory, preprint (2013)Google Scholar
  16. 16.
    Hopkins, M.J.: Algebraic topology and modular forms. In: Proceedings of the International Congress of Mathematicians, vol. I, pp. 291–317. Higher Education Press, Beijing (2002)Google Scholar
  17. 17.
    Hovey, Mark: Operations and co-operations in Morava \(E\)-theory. Homol. Homot. Appl. 6(1), 201–236 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kitchloo, N., Laures, G.: Real structures and Morava K-theories. K-Theory 25(3), 201–214 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kitchloo, N., Laures, G., Wilson, W.S.: The Morava \(K\)-theory of spaces related to BO. Adv. Math. 189(1), 192–236 (2004)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Laures, G.: An \(E_\infty \) splitting of spin bordism. Am. J. Math. 125(5), 977–1027 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Laures, G.: Characteristic classes in \(TMF\) of level \(\Gamma _1(3)\). Trans. Am. Math. Soc. 368(10), 7339–7357 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Laures, G., Olbermann, M.: \(TMF_0(3)\)-Characteristic classes for string bundles. Math. Z. 282(1–2), 511–533 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Miller, H.: The elliptic character and the Witten genus, Algebraic topology (Evanston, IL, 1988), Contemp. Math. 96, 281–289 (1988)CrossRefGoogle Scholar
  24. 24.
    Mahowald, M., Rezk, C.: Topological modular forms of level 3. Pure Appl. Math. Q. 5(2), 853–872 (2009). Special Issue: In honor of Friedrich Hirzebruch. Part 1,MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Peterson, E.: The Morava E-theory of Eilenberg–MacLane spaces, arXiv:1109.5989
  26. 26.
    Ravenel, D.C., Wilson, W.S.: The Morava \(K\)-theories of Eilenberg–MacLane spaces and the Conner–Floyd conjecture. Am. J. Math. 102(4), 691–748 (1980)CrossRefMATHGoogle Scholar
  27. 27.
    Ravenel, D.C., Wilson, W.S., Yagita, N.: Brown-Peterson cohomology from Morava K-theory. K-Theory 15(2), 147–199 (1998)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Strickland, N.P.: Gross–Hopkins duality. Topology 39(5), 1021–1033 (2000)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Westerland, C.: A higher chromatic analogue of the image of J, arXiv:1210.2472, (2013)

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Fakultät für MathematikRuhr-Universität BochumBochumGermany
  2. 2.Fakultät für MathematikRuhr-Universität BochumBochumGermany

Personalised recommendations