manuscripta mathematica

, Volume 156, Issue 1–2, pp 63–80 | Cite as

A twisted \({\overline{\partial }}_{f}\)-Neumann problem and Toeplitz n-tuples from singularity theory

  • Hao Wen
  • Huijun FanEmail author


A twisted \(\bar{\partial }_f\)-Neumann problem associated to a singularity \((\mathscr {O}_n, f)\) is established. By relating it to the Koszul complex for Toeplitz n-tuples \((f_1,\ldots ,f_n)\), where \(f_i=\frac{\partial f}{\partial z_i}\), on Bergman space \(B^0(D)\), this \(\bar{\partial }_f\)-Neumann problem is solved. Moreover, the cohomology of the \(L^2\)-holomorphic Koszul complex \((B^*(D),{\partial }f\wedge )\) can be computed explicitly.

Mathematics Subject Classification

32W99 58K99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor, J.L.: A joint spectrum for several commuting operators. J. Funct. Anal. 6, 172 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Eschmeier, J., Putinar, M.: Spectral Decompositions and Analytic Sheaves. The Clarendon Press Ox-ford University Press, Oxford Science Publications, New York (1996)zbMATHGoogle Scholar
  3. 3.
    Putinar, M.: Private Communication (2015)Google Scholar
  4. 4.
    Cecotti, S.: \(N=2\) Landau–Ginzburg vs. Calabi–Yau models: non-perturbative aspects. Int. J. Mod. Phys. A 6, 1749 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cecotti, S., Vafa, C.: Topological anti-topological fusion. Nucl. Phys. B 367, 359–461 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chiodo, A., Ruan, Y.: Landau–Ginzburg/Calabi–Yau correspondence of quintic three-fold via symplectic transformations. Invent. Math. 182(1), 117–165 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jarvis, T., Francis, A.: A Brief Survey of FJRW Theory. arXiv:1503.01223 [math.AG]
  8. 8.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry and quantum singularity theory. Ann. Math. 108(3), 1–106 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gaiotto, G., Moore, G., Witten, E.: Algebra of the infrared: string field theoretic structures in massive \(\mathbb{N}=(2,2)\) field theory in two dimension, in preparationGoogle Scholar
  10. 10.
    Kapranov, M., Kontsevich, M., Soibelman, Y.: Algebra of the infrared and secondary polytopes. Adv. Math. 300(4), 616–671 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fan, H.: Schrödinger Equations, Deformation Theory and \(tt^*\)-Geometry. arXiv:1107.1290 [math-ph]
  12. 12.
    Saito, K., Takahashi, A.: From primitive forms to frobenius manifolds, preprint (2008)Google Scholar
  13. 13.
    Li, C.-C., Li, S., Saito, K.: Primitive Forms via Polyvector Fields. arXiv:1311.1659 [math.AG]
  14. 14.
    Folland, G.B., Kohn, J.J.: The Neumann Problem for the Cauchy–Riemann Complex. Princeton University Press and University of Tokyo Press, New Jersey (1972)zbMATHGoogle Scholar
  15. 15.
    Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables. In: Yau , S.-T(ed.) AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI; 19, International Press, Boston (2001)Google Scholar
  16. 16.
    Goldberg, S.: Unbounded Linear Operators: Theory and Applications. Dover, New York (1985)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations