Skip to main content

Characteristic cycle of the external product of constructible sheaves

Abstract

We show that the characteristic cycle of the external product of constructible complexes is the external product of the characteristic cycles of the factors. This implies the compatibility of characteristic cycles with smooth pull-back which is a first step in the proof of the index formula.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Artin, M.: Théorème de finitude pour un morphism propre; dimension cohomologique des schémas algébriques affines, Exp. XIV, Théorie des Topos et Cohomologie Étale des Schémas (SGA4), Lecture Notes in Mathematics, vol. 305, pp. 145–167. Springer, Berlin (1973)

  2. 2.

    Beilinson, A.: Constructible sheaves are holonomic. Sel. Math. New Ser. (2016). doi:10.1007/s00029-016-0260-z

  3. 3.

    Braverman, A., Gaitsgory, D.: Geometric Eisenstein series. Invent. Math. 150, 287–384 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Deligne, P.: Théorèmes de finitude en cohomologie \(\ell \)-adique, Cohomologie étale, SGA \(4\frac{1}{2}\). Springer Lecture Notes in Mathematics, vol. 569, pp. 233–251 . Springer, Berlin (1977)

  5. 5.

    Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  6. 6.

    Grothendieck, A.: , Rédigé par Illusie, L.: Formule de Lefschetz, Exposé III, SGA5. Springer Lecture Notes in Mathematics. vol. 589, pp. 73–137. Springer, Berlin (1977)

  7. 7.

    Illusie, L.: Appendice à Théorème de finitude en cohomologie \(\ell \)-adique, Cohomologie étale SGA \(4\frac{1}{2}\). Springer Lecture Notes in Mathematics, vol. 569, pp. 252–261 (1977)

  8. 8.

    Illusie, L.: Produits orientés. Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents, Exposé XI, Astérisque, vol. 363–364, pp. 213–234 (2014)

  9. 9.

    Illusie, L.: Around the Thom–Sebastiani theorem, with an appendix by Weizhe Zheng. Manuscr. Math. (2016). doi:10.1007/s00229-016-0852-0

  10. 10.

    Kashiwara, M., Schapira, P.: Sheaves on manifolds. Grundlehren der Math. Wissenschaften, vol. 292, Springer-Verlag (1990)

  11. 11.

    Laumon, G.: Caractéristique d’Euler-Poincaré des faisceaux constructibles sur une surface. Astérisque 101(102), 193–207 (1983)

    MATH  Google Scholar 

  12. 12.

    Laumon, G.: Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil. Publ. Math. IHÉS 65, 131–210 (1987)

    Article  MATH  Google Scholar 

  13. 13.

    Orgogozo, F.: Modifications et cycles évanescents sur une base de dimension supérieure à un, Int. Math. Res. Notices, 2006, 1–38 (2006)

  14. 14.

    Saito, T.: The characteristic cycle and the singular support of a constructible sheaf. Invent. Math. (2016). doi:10.1007/s00222-016-0675-3

  15. 15.

    Saito, T.: Characteristic cycle and the Euler number of a constructible sheaf on a surface. J. Math. Sci. 22(Kodaira Centennial issue), 387–442 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takeshi Saito.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saito, T. Characteristic cycle of the external product of constructible sheaves. manuscripta math. 154, 1–12 (2017). https://doi.org/10.1007/s00229-016-0913-4

Download citation

Mathematics Subject Classification

  • Primary 14F20
  • Secondary 14C17