manuscripta mathematica

, Volume 154, Issue 1–2, pp 13–22 | Cite as

The moduli of smooth hypersurfaces with level structure

  • A. Javanpeykar
  • D. Loughran


We construct the moduli space of smooth hypersurfaces with level N structure over \(\mathbb {Z}[1/N]\). As an application we show that, for N large enough, the stack of smooth hypersurfaces over \(\mathbb {Z}[1/N]\) is uniformisable by a smooth affine scheme. To prove our results, we use the Lefschetz trace formula to show that automorphisms of smooth hypersurfaces act faithfully on their cohomology. We also prove a global Torelli theorem for smooth cubic threefolds over fields of odd characteristic.

Mathematics Subject Classification

14D23 (14K30, 14J50, 14C34) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramovich, D., Olsson, M., Vistoli, A.: Tame stacks in positive characteristic. Ann. Inst. Fourier (Grenoble) 58(4), 1057–1091 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Achter, J.: Arithmetic Torelli maps for cubic surfaces and threefolds. Trans. Am. Math. Soc. 366(11), 5749–5769 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beauville, A.: Les singularités du diviseur \(\Theta \) de la jacobienne intermédiaire de l’hypersurface cubique dans \({ P}^{4}\). In: Conte A (ed.) Algebraic Threefolds (Varenna. 1981), Volume 947 of Lecture Notes in Mathematics, pp. 190–208. Springer, New York (1982)Google Scholar
  4. 4.
    Beauville, A.: Some remarks on Kähler manifolds with \(c_{1}=0\). In: Ueno K (ed.) Classification of Algebraic and Analytic Manifolds (Katata. 1982), Volume 39 of Progress in Mathematics, pp. 1–26. Birkhäuser Boston, Boston (1983)Google Scholar
  5. 5.
    Behrend, K., Noohi, B.: Uniformization of Deligne–Mumford curves. J. Reine Angew. Math. 599, 111–153 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Benoist, O.: Espace de modules d’intersections complètes lisses Ph.D. thesisGoogle Scholar
  7. 7.
    Benoist, O.: Séparation et propriété de Deligne–Mumford des champs de modules d’intersections complètes lisses. J. Lond. Math. Soc. (2) 87(1), 138–156 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bergh, D.: Motivic classes of some classifying stacks. J. Lond. Math. Soc. (2) 93(1), 219–243 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boissière, S., Nieper-Wißkirchen, M., Sarti, A.: Higher dimensional Enriques varieties and automorphisms of generalized Kummer varieties. J. Math. Pures Appl. (9) 95(5), 553–563 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bombieri, E., Swinnerton-Dyer, H.P.F.: On the local zeta function of a cubic threefold. Ann. Scuola Norm. Sup. Pisa (3) 21, 1–29 (1967)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cai, J.-X., Liu, W., Zhang, L.: Automorphisms of surfaces of general type with \(q\ge 2\) acting trivially in cohomology. Compos. Math. 149(10), 1667–1684 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen, X., Pan, X., Zhang, D.: Automorphism and cohomology II: complete intersections. arXiv:1511.07906
  13. 13.
    Chênevert, G.: Representations on the cohomology of smooth projective hypersurfaces with symmetries. Proc. Am. Math. Soc. 141(4), 1185–1197 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Clemens, C.H., Griffiths, P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. (2) 95, 281–356 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Conrad, B.: Arithmetic moduli of generalized elliptic curves. J. Inst. Math. Jussieu 6(2), 209–278 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Conrad, B., Gabber, O., Prasad, G.: Pseudo-Reductive Groups, Volume 17 of New Mathematical Monographs. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Deligne, P.: Les intersections complètes de niveau de Hodge un. Invent. Math. 15, 237–250 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grothendieck, A.: Cohomologie \(l\)-Adique et Fonctions \(L\) (SGA 5). Lecture Notes in Mathematics, vol. 589. Springer, New York (1977). (Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966)Google Scholar
  19. 19.
    Javanpeykar, A., Loughran, D.: Complete intersections: moduli, torelli, and good reduction. Math. Ann. arXiv:1505.02249 (to appear)
  20. 20.
    Katz, N.M., Mazur, B.: Arithmetic Moduli of Elliptic Curves, Volume 108 of Annals of Mathematics Studies. Princeton University Press, Princeton (1985)CrossRefGoogle Scholar
  21. 21.
    Keel, S., Mori, S.: Quotients by groupoids. Ann. Math. (2) 145(1), 193–213 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Laumon, G., Moret-Bailly, L.: Champs Algébriques. Volume 39 of Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Berlin (2000)Google Scholar
  23. 23.
    Moret-Bailly, L.: Pinceaux de variétés abéliennes. Astérisque 129, 1–266 (1985)Google Scholar
  24. 24.
    Mukai, S., Namikawa, Y.: Automorphisms of Enriques surfaces which act trivially on the cohomology groups. Invent. Math. 77(3), 383–397 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, volume 34 of Ergebnisse der Mathematik und Ihrer Grenzgebiete (2), 3rd edn. Springer, Berlin (1994)Google Scholar
  26. 26.
    Noohi, B.: Fundamental groups of algebraic stacks. J. Inst. Math. Jussieu 3(1), 69–103 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pan, X.: Automorphism and cohomology I: fano variety of lines and cubic arXiv:1511.05272
  28. 28.
    Peters, C.A.M.: Holomorphic automorphisms of compact Kähler surfaces and their induced actions in cohomology. Invent. Math. 52(2), 143–148 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Popp, H.: On moduli of algebraic varieties. I. Invent. Math. 22, 1–40, (1973/74)Google Scholar
  30. 30.
    Rizov, J.: Moduli stacks of polarized \(K3\) surfaces in mixed characteristic. Serdica Math. J. 32(2–3), 131–178 (2006)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Serre, J.-P.: Rigidité du foncteur de Jacobi d’échelon \(n\ge 3\). Appendix of Exp. 17 of Séminaire Cartan (1960)Google Scholar
  32. 32.
    Seshadri, C.S.: Geometric reductivity over arbitrary base. Adv. Math. 26(3), 225–274 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Silverberg, A., Zarhin, Yu. G: Variations on a theme of Minkowski and Serre. J. Pure Appl. Algebra 111(1–3), 285–302 (1996)Google Scholar
  34. 34.
    The Stacks Project Authors. Stacks Project. (2015)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für MathematikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations