Skip to main content
Log in

Cartier theory with coefficients

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We develop a Cartier theory to describe formal groups with an action of a number ring A. Such formal groups are called formal A-modules. An important example of a formal A-module is the formal group of A-typical Witt vectors that generalize the big Witt vectors: instead of indexing over the non-zero natural numbers, we index over a subset of non-zero ideals of A. Using a variant of the A-typical Witt vectors, we define the A-typical Cartier ring \(\mathbb {E}_{A}\) and prove that the category of formal A-modules is equivalent to the category of \(\mathbb {E}_{A}(R)\)-modules under the assumption that the tangent space is finitely generated and projective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahsendorf, T.: \(O\)-Displays and \({\pi }\)-Divisible Formal Groups. PhD thesis, Bielefeld (2011)

  2. Boutot, J.-F., Carayol, H.: Uniformisation \(p\)-adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfel’d. Astérisque, (196–197):7, 45–158 (1992) (1991. Courbes modulaires et courbes de Shimura (Orsay, 1987/1988))

  3. Borger, J.: The basic geometry of Witt vectors, I: The affine case. Algebra Number Theory 5(2), 231–285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cartier, P.: Groupes formels associés aux anneaux de Witt généralisés. C. R. Acad. Sci. Paris Sér. A-B 265, A49–A52 (1967)

    MathSciNet  MATH  Google Scholar 

  5. Cartier, P.: Modules associés à un groupe formel commutatif. Courbes typiques. C. R. Acad. Sci. Paris Sér. A-B 265, A129–A132 (1967)

    MathSciNet  MATH  Google Scholar 

  6. Cartier, P.: Relèvements des Groupes Formels Commutatifs. In: Séminaire Bourbaki, Vol. 1968/69: Exposés 347–363, Volume 175 of Lecture Notes in Math., pages Exp. No. 359, 217–230. Springer, Berlin (1971)

  7. Drinfel’d, V.G.: Coverings of \(p\)-adic symmetric domains. Funkcional. Anal. i Priložen. 10(2), 29–40 (1976)

    MathSciNet  MATH  Google Scholar 

  8. Fontaine, J.-M., Fargues, L.: Courbes et fibrés vectoriels en théorie de hodge p-adique (2011)

  9. Hazewinkel, M.: Formal Groups and Applications, vol  78 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1978)

  10. Hazewinkel, M.: Constructing formal groups. VIII. Formal \(A\)-modules. Compositio Math. 38(3), 277–291 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Hazewinkel, M.: Twisted Lubin-Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials. Trans. Am. Math. Soc. 259(1), 47–63 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hesselholt, L.: The big de rham-witt complex. (2010)

  13. Lazard, M.: Commutative Formal Groups. Lecture Notes in Mathematics, vol. 443. Springer, Berlin (1975)

    Book  Google Scholar 

  14. Lenzing, H.: Endlich präsentierbare Moduln. Arch. Math. (Basel) 20, 262–266 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lubin, J., Tate, J.: Formal complex multiplication in local fields. Ann. Math. 2(81), 380–387 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zink, T.: Cartiertheorie kommutativer formaler Gruppen, vol 68 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1984). With English, French and Russian Summaries

  17. Zink, T.: Cartiertheorie über Perfekten Ringen I,II. Karl-Weierstrass-Institut für Mathematik (1986)

  18. Zink, T.: The display of a formal \(p\)-divisible group. Cohomologies \(p\)-adiques et applications arithmétiques, I. Astérisque 278, 127–248 (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Verhoek.

Additional information

This work has been supported by SFB/CRC 701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verhoek, H. Cartier theory with coefficients. manuscripta math. 153, 455–499 (2017). https://doi.org/10.1007/s00229-016-0892-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-016-0892-5

Mathematics Subject Classification

Navigation