manuscripta mathematica

, Volume 153, Issue 3–4, pp 323–330 | Cite as

Quasi-compactness of Néron models, and an application to torsion points

  • David HolmesEmail author
Open Access


We prove that Néron models of Jacobians of generically-smooth nodal curves over bases of arbitrary dimension are quasi-compact (hence of finite type) whenever they exist. We give a simple application to the orders of torsion subgroups of Jacobians over number fields.

Mathematics Subject Classification

Primary 11G10 Secondary 14K30 14K05 


  1. 1.
    Artin, M.: Algebraization of Formal Moduli. I. In: Spencer, D.C., Iyanaga S. (eds.) Global Analysis: Papers in Honor of K. Kodaira (PMS-29). Princeton University Press, pp. 21–71 (1969).
  2. 2.
    Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cadoret, A., Tamagawa, A.: Uniform boundedness of p-primary torsion of abelian schemes. Invent. Math. 188(1), 83–125 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cadoret, A., Tamagawa, A.: Note on torsion conjecture. In: Geometric and Differential Galois Theories, Volume 27 of Séminar Congress, pp. 57–68. Society Mathematics France, Paris (2013)Google Scholar
  5. 5.
    de Jong, A.J.: Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math. 83, 51–93 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Edixhoven, B.: On Néron models, divisors and modular curves. J. Ramanujan Math. Soc. 13(2), 157–194 (1998)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Holmes, D.: A Néron model of the universal jacobian. (2014)
  8. 8.
    Holmes, D.: Néron models of jacobians over base schemes of dimension greater than 1. J. Reine Angew. Math. (2014)
  9. 9.
    Holmes, D.: Torsion points and height jumping in higher-dimensional families of abelian varieties. arXiv preprint (2016)
  10. 10.
    Kambayashi, T., Miyanishi, M., Takeuchi, M.: Unipotent Algebraic Groups. Lecture Notes in Mathematics, vol. 414. Springer, Berlin (1974)CrossRefzbMATHGoogle Scholar
  11. 11.
    Silverman, J.H.: Heights and the specialization map for families of abelian varieties. J. Reine Angew. Math. 342, 197–211 (1983)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Tate, J.: Variation of the canonical height of a point depending on a parameter. Am. J. Math. 105(1), 287–294 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Universiteit LeidenLeidenNetherlands

Personalised recommendations