Abstract
A weighted norm inequality involving A 1 weights is obtained at the natural exponent for gradients of solutions to quasilinear elliptic equations in Reifenberg flat domains. Certain gradient estimates in Lorentz–Morrey spaces below the natural exponent are also obtained as a consequence of our analysis.
This is a preview of subscription content, access via your institution.
References
Adimurthi K., Phuc N.C.: Global Lorentz and Lorentz–Morrey estimates below the natural exponent for quasilinear equations. Calc. Var. Partial Differ. Equ. 54, 3107–3139 (2015)
Byun S., Wang L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57, 1283–1310 (2004)
Byun S., Wang L., Zhou S.: Nonlinear elliptic equations with BMO coefficients in Reifenberg domains. J. Funct. Anal. 250, 167–196 (2007)
Byun S., Wang L.: Elliptic equations with BMO nonlinearity in Reifenberg domains. Adv. Math. 219, 1937–1971 (2008)
Caffarelli L., Peral I.: On W 1,p, estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51, 1–21 (1998)
Fefferman C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)
García-Cuerva, J., Rubio de Francia, J.L.:Weighted norm inequalities and related topics. In: North-Holland Mathematics Studies, vol. 116. Notas de Matemática Mathematical Notes], vol. 104. North-Holland Publishing Co., Amsterdam, (1985)
Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, Inc., Upper Saddle River (2004)
Guadalupe J., Perez M.: Perturbation of orthogonal Fourier expansions. J. Approx. Theory 92, 294–307 (1998)
Hajlasz P., Martio O.: Traces of Sobolev functions on fractal type sets and characterization of extension domains. J. Funct. Anal. 143, 221–246 (1997)
Iwaniec T.: Projections onto gradient fields andProjections onto gradient fields and L p-estimates for degenerated elliptic operators. Studia Math. 75, 293–312 (1983)
Iwaniec T., Sbordone C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)
Iwaniec T., Koskela P., Martin G.: Mappings of BMO-distortion and beltrami-type operators. J. Anal. Math. 88, 337–381 (2002)
Jerison D., Kenig C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)
Jones P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)
Kenig C., Toro T.: Free boundary regularity for harmonic measures and the Poissonkernel. Ann. Math. 150, 367–454 (1999)
Kenig C., Toro T.: Poisson kernel characterization of Reifenberg flat chord arc domains. Ann. Sci. École Norm. Sup. 36(4), 323–401 (2003)
Kinnunen J., Zhou S.: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differ. Equ. 24, 2043–2068 (1999)
Kinnunen J., Zhou S.: A boundary estimate for nonlinear equations with discontinuous coefficients. Differ. Integral Equ. 14, 475–492 (2001)
Lewis J.L.: On Very weak solutions of certain elliptic systems. Commun. Partial Differ. Equ. 18, 1515–1537 (1993)
Maz’ya V.G., Verbitsky E.I.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolevmultipliers. Ark. Mat. 33, 81–115 (1995)
Mengesha T., Phuc N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. Differ. Equ. 250, 1485–2507 (2011)
Mengesha T., Phuc N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203, 189–216 (2011)
Mengesha, T., Phuc, N.C.: Quasilinear Ricatti type equations with distributional data in Morrey space framework. Submitted for publication
Milman, M.: Rearrangements of BMO functions and interpolation. Lecture Notes in Mathematics, vol. 1070. Springer, Berlin (1984)
Phuc N.C.: Nonlinear Muckenhoupt–Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math. 250, 387–419 (2014)
Phuc N.C.: On Calderón–Zygmund theory for p− and \({\mathcal{A}}\)-superharmonic functions. Calc. Var. Partial Differ. Equ. 46, 165–181 (2013)
Reifenberg E.: Solutions of the Plateau Problemfor m-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960)
Sarason D.: Functions of vanishingmean oscillation. Trans. Am. Math. Soc. 207, 391–405 (1975)
Semmes S.: Hypersurfaces in \({\mathbb{R}^{n}}\) whose unit normal has small BMO norm. Proc. Am. Math. Soc. 112, 403–412 (1991)
Sohr H.: A regularity class for the Navier-Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)
Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)
Toro T.: Doubling and flatness: geometry ofmeasures. Not. Am. Math. Soc. 44, 1087–1094 (1997)
Vuorinen M., Martio O., Ryazanov V.: On the local behavior of quasiregular mappings in n-dimensional space. Izv. Math. 62, 1207–1220 (1998)
Wang L.: Ageometric approach to the Calderón–Zygmund estimates. Acta Math. Sin. (Engl. Ser.) 19, 381–396 (2003)
Ziemer, W.P.: Weakly differentiable functions. In: Ewing, J.H., Gehring, F.W., Halmos, P.R. (eds.) Graduate Texts inMathematics, vol. 120. Springer, New York (1989)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Adimurthi, K., Phuc, N.C. An end-point global gradient weighted estimate for quasilinear equations in non-smooth domains. manuscripta math. 150, 111–135 (2016). https://doi.org/10.1007/s00229-015-0804-0
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00229-015-0804-0