An end-point global gradient weighted estimate for quasilinear equations in non-smooth domains

Abstract

A weighted norm inequality involving A 1 weights is obtained at the natural exponent for gradients of solutions to quasilinear elliptic equations in Reifenberg flat domains. Certain gradient estimates in Lorentz–Morrey spaces below the natural exponent are also obtained as a consequence of our analysis.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adimurthi K., Phuc N.C.: Global Lorentz and Lorentz–Morrey estimates below the natural exponent for quasilinear equations. Calc. Var. Partial Differ. Equ. 54, 3107–3139 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Byun S., Wang L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57, 1283–1310 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Byun S., Wang L., Zhou S.: Nonlinear elliptic equations with BMO coefficients in Reifenberg domains. J. Funct. Anal. 250, 167–196 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Byun S., Wang L.: Elliptic equations with BMO nonlinearity in Reifenberg domains. Adv. Math. 219, 1937–1971 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Caffarelli L., Peral I.: On W 1,p, estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51, 1–21 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Fefferman C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    García-Cuerva, J., Rubio de Francia, J.L.:Weighted norm inequalities and related topics. In: North-Holland Mathematics Studies, vol. 116. Notas de Matemática Mathematical Notes], vol. 104. North-Holland Publishing Co., Amsterdam, (1985)

  8. 8.

    Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, Inc., Upper Saddle River (2004)

  9. 9.

    Guadalupe J., Perez M.: Perturbation of orthogonal Fourier expansions. J. Approx. Theory 92, 294–307 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Hajlasz P., Martio O.: Traces of Sobolev functions on fractal type sets and characterization of extension domains. J. Funct. Anal. 143, 221–246 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Iwaniec T.: Projections onto gradient fields andProjections onto gradient fields and L p-estimates for degenerated elliptic operators. Studia Math. 75, 293–312 (1983)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Iwaniec T., Sbordone C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Iwaniec T., Koskela P., Martin G.: Mappings of BMO-distortion and beltrami-type operators. J. Anal. Math. 88, 337–381 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Jerison D., Kenig C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Jones P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Kenig C., Toro T.: Free boundary regularity for harmonic measures and the Poissonkernel. Ann. Math. 150, 367–454 (1999)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Kenig C., Toro T.: Poisson kernel characterization of Reifenberg flat chord arc domains. Ann. Sci. École Norm. Sup. 36(4), 323–401 (2003)

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Kinnunen J., Zhou S.: A local estimate for nonlinear equations with discontinuous coefficients. Commun. Partial Differ. Equ. 24, 2043–2068 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Kinnunen J., Zhou S.: A boundary estimate for nonlinear equations with discontinuous coefficients. Differ. Integral Equ. 14, 475–492 (2001)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Lewis J.L.: On Very weak solutions of certain elliptic systems. Commun. Partial Differ. Equ. 18, 1515–1537 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Maz’ya V.G., Verbitsky E.I.: Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolevmultipliers. Ark. Mat. 33, 81–115 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Mengesha T., Phuc N.C.: Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains. J. Differ. Equ. 250, 1485–2507 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Mengesha T., Phuc N.C.: Global estimates for quasilinear elliptic equations on Reifenberg flat domains. Arch. Ration. Mech. Anal. 203, 189–216 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Mengesha, T., Phuc, N.C.: Quasilinear Ricatti type equations with distributional data in Morrey space framework. Submitted for publication

  25. 25.

    Milman, M.: Rearrangements of BMO functions and interpolation. Lecture Notes in Mathematics, vol. 1070. Springer, Berlin (1984)

  26. 26.

    Phuc N.C.: Nonlinear Muckenhoupt–Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations. Adv. Math. 250, 387–419 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Phuc N.C.: On Calderón–Zygmund theory for p− and \({\mathcal{A}}\)-superharmonic functions. Calc. Var. Partial Differ. Equ. 46, 165–181 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Reifenberg E.: Solutions of the Plateau Problemfor m-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Sarason D.: Functions of vanishingmean oscillation. Trans. Am. Math. Soc. 207, 391–405 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Semmes S.: Hypersurfaces in \({\mathbb{R}^{n}}\) whose unit normal has small BMO norm. Proc. Am. Math. Soc. 112, 403–412 (1991)

  31. 31.

    Sohr H.: A regularity class for the Navier-Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Toro T.: Doubling and flatness: geometry ofmeasures. Not. Am. Math. Soc. 44, 1087–1094 (1997)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Vuorinen M., Martio O., Ryazanov V.: On the local behavior of quasiregular mappings in n-dimensional space. Izv. Math. 62, 1207–1220 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Wang L.: Ageometric approach to the Calderón–Zygmund estimates. Acta Math. Sin. (Engl. Ser.) 19, 381–396 (2003)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Ziemer, W.P.: Weakly differentiable functions. In: Ewing, J.H., Gehring, F.W., Halmos, P.R. (eds.) Graduate Texts inMathematics, vol. 120. Springer, New York (1989)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nguyen Cong Phuc.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adimurthi, K., Phuc, N.C. An end-point global gradient weighted estimate for quasilinear equations in non-smooth domains. manuscripta math. 150, 111–135 (2016). https://doi.org/10.1007/s00229-015-0804-0

Download citation

Mathematics Subject Classification

  • primary: 35J92
  • 35B45
  • secondary: 42B20
  • 42B37