Skip to main content
Log in

A note on the area and coarea formulas for general volume densities and some applications

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We present the area and coarea formulas for Lipschitz maps, valid for general volume densities. We apply these formulas to derive an anisotropic tube formula for hypersurfaces in \({{\mathbb{R}}^n}\) and to give a short euclidean proof of the anisotropic Sobolev inequality. A discussion about the first variation of the anisotropic area is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvino A., Ferone V., Trombetti G., Lions P-L.: Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 14(2), 275–293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio L., Kirchheim B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318, 527–555 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Álvarez Paiva J.C., Thompson A.C.: Volumes on Normed and Finsler Spaces. A sampler of Riemann-Finsler Geometry, MSRI Pub., vol. 50. pp. 1–48. Cambridge Univ. Press, Cambridge (2004)

    Google Scholar 

  4. Andrews B.: Volume-preserving anisotropic mean curvature flows. Indiana Univ. Math. J. 50(2), 783–827 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle, A., Lisini, S., Lussardi, L.: A remark on the anisotropic outer Minkowski content. http://arxiv.org/abs/1203.5190

  6. Cordero-Erausquin D., Nazaret B., Villani C.: A mass transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities. Adv. Math. 182, 307–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evans L., Gariepy R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  8. Federer H.: Geometric Measure Theory. Grundlehren der Mathematischen Wissenschaften. Springer, New York (1969)

    Google Scholar 

  9. Federer H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  10. Federer H., Fleming W.: Normal and integral currents. Ann. Math. 72(3), 458–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

  12. Greub W., Halperin S., Vanstone R.: Connections, Curvature and Cohomology, vol. 1. Academic Press, San Diego (1972)

    Google Scholar 

  13. Kirchheim B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. AMS 121(1), 113–123 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koiso M., Palmer B.: Geometry and stability of surfaces with constant anisotropic mean curvature. Indiana Univ. Math. J. 54(6), 1817–1852 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Milman V., Schechtman G.: Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics 1200. Springer, Berlin (1986)

    Google Scholar 

  16. Palmer B.: Stability of the Wulff shape. Proc. AMS 126(12), 3661–3667 (1998)

    Article  MATH  Google Scholar 

  17. Schneider R.: Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications 44. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  18. Shen Z.: Lectures on Finsler Geometry. World Scientific Publishing Co., Singapore (2001)

    Book  MATH  Google Scholar 

  19. Simon, L.: Lectures on Geometric Measure Theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, 1983

  20. Taylor J.: Crystalline variational problems. Bull. AMS. 84, 568–588 (1978)

    Article  MATH  Google Scholar 

  21. van Schaftingen J.: Anisotropic symmetrization. Ann. Inst. H. Poincar Anal. Non Linaire 23, 539–565 (2006)

    Article  MATH  Google Scholar 

  22. Zhang G.: The affine Sobolev inequality. J. Differ. Geom. 53(1), 183–202 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cibotaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cibotaru, D., de Lira, J. A note on the area and coarea formulas for general volume densities and some applications. manuscripta math. 149, 471–506 (2016). https://doi.org/10.1007/s00229-015-0779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0779-x

Mathematics Subject Classification

Navigation