Advertisement

Manuscripta Mathematica

, Volume 147, Issue 3–4, pp 437–476 | Cite as

On Jacquet modules of representations of segment type

  • Ivan MatićEmail author
  • Marko Tadić
Article

Abstract

Let G n denote either the group Sp(n, F) or SO(2n + 1, F) over a local non-archimedean field F. We study representations of segment type of group G n , which play a fundamental role in the constructions of discrete series, and obtain a complete description of the Jacquet modules of these representations. Also, we provide an alternative way for determination of Jacquet modules of strongly positive discrete series and a description of top Jacquet modules of general discrete series.

Mathematics Subject Classification

22E35 (primary) 22E50 11F70 (secondary) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, J.: The Endoscopic Classification of Representations, vol. 61 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (2013). Orthogonal and symplectic groupsGoogle Scholar
  2. 2.
    Jantzen C.: Tempered representations for classical p-adic groups. Manuscr. Math. 145, 319–387 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Kret A., Lapid E.: Jacquet modules of ladder representations. C. R. Math. Acad. Sci. Paris 350, 937–940 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Lapid E., Mínguez A.: On a determinantal formula of Tadić. Am. J. Math. 136, 111–142 (2014)zbMATHCrossRefGoogle Scholar
  5. 5.
    Matić I.: Strongly positive representations of metaplectic groups. J. Algebra 334, 255–274 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Matić I.: Jacquet modules of strongly positive representations of the metaplectic group \({\widetilde{Sp(n)}}\) . Trans. Am. Math. Soc. 365, 2755–2778 (2013)zbMATHGoogle Scholar
  7. 7.
    Matić, I.: On Jacquet Modules of Discrete Series: The First Inductive Step. preprint (2014)Google Scholar
  8. 8.
    Mœglin C.: Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité. J. Eur. Math. Soc. 4, 143–200 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Mœglin C., Tadić M.: Construction of discrete series for classical p-adic groups. J. Am. Math. Soc. 15, 715–786 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Muić G.: Composition series of generalized principal series; the case of strongly positive discrete series. Isr. J. Math. 140, 157–202 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Silberger A.J.: Special representations of reductive p-adic groups are not integrable. Ann. Math. 111(2), 571–587 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Tadić M.: Structure arising from induction and Jacquet modules of representations of classical p-adic groups. J. Algebra 177, 1–33 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Tadić M.: On reducibility of parabolic induction. Isr. J. Math. 107, 29–91 (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Tadić, M.: Square integrable representations of classical p-adic groups corresponding to segments. Represent. Theory 3, 58–89 (1999); (electronic)Google Scholar
  15. 15.
    Tadić M.: On invariants of discrete series representations of classical p-adic groups. Manuscr. Math. 135, 417–435 (2011)zbMATHCrossRefGoogle Scholar
  16. 16.
    Tadić M.: On tempered and square integrable representations of classical p-adic groups. Sci. China Math. 56, 2273–2313 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Zelevinsky A.V.: Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. école Norm. Sup. 13(4), 165–210 (1980)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OsijekOsijekCroatia
  2. 2.Department of MathematicsUniversity of ZagrebZagrebCroatia

Personalised recommendations