Skip to main content
Log in

Shortest closed billiard orbits on convex tables

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Given a planar compact convex billiard table T, we give an algorithm to find the shortest generalised closed billiard orbits on T. (Generalised billiard orbits are usual billiard orbits if T has smooth boundary.) This algorithm is finite if T is a polygon and provides an approximation scheme in general. As an illustration, we show that the shortest generalised closed billiard orbit in a regular n-gon R n is 2-bounce for \({n \ge 4}\), with length twice the width of R n . As an application we obtain an algorithm computing the Ekeland–Hofer–Zehnder capacity of the four-dimensional domain \({T \times B^2}\) in the standard symplectic vector space \({{\mathbb{R}}^4}\). Our method is based on the work of Bezdek–Bezdek (Geom. Dedicata 141:197–206, 2009) and on the uniqueness of the Fagnano triangle in acute triangles. It works, more generally, for planar Minkowski billiards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akopyan, A., Balitskiy, A., Karasev, R., Sharipova, A.: Elementary approach to closed billiard trajectories in asymmetric normed spaces. arXiv:1401.0442

  2. Artstein-Avidan, S., Karasev, R., Ostrover, Y.: From symplectic measurements to the Mahler conjecture. Duke Math. J. 163, 2003–2022 (2014)

  3. Artstein-Avidan, S., Ostrover, Y.: A Brunn–Minkowski inequality for symplectic capacities of convex domains. Int. Math. Res. Not. IMRN (2008)

  4. Artstein-Avidan, S., Ostrover, Y.: Bounds for Minkowski billiard trajectories in convex bodies. Int. Math. Res. Not. IMRN, 2014, 165–193 (2014)

  5. Berger M.: Geometry I. Universitext. Springer, Berlin (1987)

    Book  Google Scholar 

  6. Bezdek D., Bezdek K.: Shortest billiard trajectories. Geom. Dedicata 141, 197–206 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Birkhoff G.D.: On the periodic motions of dynamical systems. Acta Math. 50, 359–379 (1927)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cieliebak, K., Hofer, H., Latschev, J., Schlenk, F.: Quantitative symplectic geometry. In: Dynamics, Ergodic Theory, and Geometry, Math. Sci. Res. Inst. Publ. vol. 54, pp. 1–44. Cambridge University Press, Cambridge (2007)

  9. Courant R., Robbins H.: What is Mathematics? An Elementary Approach to Ideas and Methods. Oxford University Press, New York (1979)

    Google Scholar 

  10. Coxeter H.S.M.: Introduction to Geometry. 2nd edn. Wiley, New York (1969)

    MATH  Google Scholar 

  11. Eggleston H.G.: Convexity. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 47. Cambridge University Press, New York (1958)

    Google Scholar 

  12. Ekeland I., Hofer H.: Symplectic topology and Hamiltonian dynamics. Math. Z. 200, 355–378 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ghomi M.: Shortest periodic billiard trajectories in convex bodies. Geom. Funct. Anal. 14, 295–302 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gutkin, E.: Billiard dynamics: an updated survey with the emphasis on open problems. Chaos Interdiscip. J. Nonlinear Sci. 22 (2012). arXiv:1301.2547

  15. Gutkin E., Tabachnikov S.: Billiards in Finsler and Minkowski geometries. J. Geom. Phys. 40, 277–301 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hofer, H., Zehnder, E.: A new capacity for symplectic manifolds. Analysis, et cetera, pp. 405–427. Academic Press, Boston (1990)

  17. Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, Basel (1994)

  18. Katok, A.: Billiard table as a playground for a mathematician. In: Surveys in modern mathematics. London Math. Soc. Lecture Note Ser., vol. 321, pp. 216–242. Cambridge University Press, Cambridge (2005)

  19. Kozlov V., Treshchëv D.: Billiards. A genetic introduction to the dynamics of systems with impacts. Translations of Mathematical Monographs, vol. 89. AMS, Providence (1991)

    Google Scholar 

  20. Tabachnikov S.: Geometry and billiards. Student Mathematical Library, vol. 30. AMS, Providence (2005)

    Google Scholar 

  21. Vorobets Y., Galperin G., Stëpin A.: Periodic billiard trajectories in polygons: generation mechanisms. Russ. Math. Surv. 47, 5–80 (1992)

    Article  MATH  Google Scholar 

  22. Zelditch S.: Spectral determination of analytic bi-axisymmetric plane domains. Geom. Funct. Anal. 10, 628–677 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Schlenk.

Additional information

NA partially supported by the research fellowship 2013.0061 granted by the Federal Department of Home Affairs FDHA of the Swiss government.

FS partially supported by SNF Grant 200020-144432/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkoumi, N., Schlenk, F. Shortest closed billiard orbits on convex tables. manuscripta math. 147, 365–380 (2015). https://doi.org/10.1007/s00229-014-0724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0724-4

Mathematics Subject Classification

Navigation