Abstract
We study a nonlinear parabolic equation with an irregular obstacle over a non-smooth domain and establish a global Calderón–Zygmund theory by proving that the spatial gradient of the weak solution is as integrable as both that of the obstacle and the nonhomogeneous term. Our results extend the known interior regularity for such obstacle problems in Lebesgue spaces to the boundary one in Orlicz spaces. The domain under consideration is a δ-Reifenberg domain which is a natural extension of a Lipschitz one with a small Lipschitz constant, while the function space under consideration is an Orlicz space which is a natural generalization of the Lebesgue space.
Similar content being viewed by others
References
Acerbi E., Mingione G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)
Baroni P.: Lorentz estimates for obstacle parabolic problems. Nonlinear Anal. 96, 167–188 (2014)
Bögelein V., Duzaar F., Mingione G.: Degenerate problems with irregular obstacles. J. Reine Angew. Math. 650, 107–160 (2011)
Bögelein V., Parviainen M.: Self-improving property of nonlinear higher order parabolic systems near the boundary. Nonlinear Differ. Equ. Appl. 17(1), 21–54 (2010)
Byun S.: Gradient estimates in Orlicz spaces for nonlinear elliptic equations with BMO nonlinearity in nonsmooth domains. Forum Math. 23(4), 693–711 (2011)
Byun S., Cho Y.: Nonlinear gradient estimates for parabolic problems with irregular obstacles. Nonlinear Anal. 94, 32–44 (2014)
Byun, S., Cho, Y., Palagachev, D.: Global weighted estimates for nonlinear elliptic obstacle problems over Reifenberg domains. Proc. Am. Math. Soc. (in press)
Byun S., Cho Y., Wang L.: Calderón-Zygmund theory for nonlinear elliptic problems with irregular obstacles. J. Funct. Anal. 263(10), 3117–3143 (2012)
Byun S., Ok J., Ryu S.: Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains. J. Differ. Equ. 254(11), 4290–4326 (2013)
Byun S., Ryu S.: Global weighted estimates for the gradient of solutions to nonlinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(2), 291–313 (2013)
Choe H., Lewis J.L.: On the obstacle problem for quasilinear elliptic equations of p Laplacian type. SIAM J. Math. Anal. 22(3), 623–638 (1991)
Choe H.: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114(4), 383–394 (1991)
Choe H.: On the regularity of parabolic equations and obstacle problems with quadratic growth nonlinearities. J. Differ. Equ. 102(1), 101–118 (1993)
DiBenedetto E.: Degenerate Parabolic Equations. Universitext Springer, New York (1993)
Erhardt A.: Calderón-Zygmund theory for parabolic obstacle problems with nonstandard growth. Adv. Nonlinear Anal. 3(1), 15–44 (2014)
Fuchs M.: Hölder continuity of the gradient for degenerate variational inequalities. Nonlinear Anal. 15(1), 85–100 (1990)
Jones P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147(1–2), 71–88 (1981)
Kenig C., Toro T.: Free boundary regularity for harmonic measures and Poisson kernels. Ann. Math. 150(2), 369–454 (1999)
Kokilashvili V., Krbec M.: Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co. Inc, River Edge NJ (1991)
Lemenant A., Milakis E., Spinolo L.: Spectral stability estimates for the Dirichlet and Neumann Laplacian in rough domains. J. Funct. Anal. 264(9), 2097–2135 (2013)
Lieberman G.M.: Regularity of solutions to some degenerate double obstacle problems. Indiana Univ. Math. J. 40(3), 1009–1028 (1991)
Lindqvist P.: Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity. Nonlinear Anal. 12(11), 1245–1255 (1988)
Mingione G.: The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(2), 195–261 (2007)
Mu J.: Higher regularity of the solution to the p-Laplacian obstacle problem. J. Differ. Equ. 95(2), 370–384 (1992)
Norando T.: C 1,α local regularity for a class of quasilinear elliptic variational inequalities. Boll. Un. Mat. Ital. C(6) 5(1), 281–292 (1986)
Rao M.M., Ren Z.D.: Theory of Orlicz Spaces. Marcel Dekker Inc, New York (1991)
Rao M.M., Ren Z.D.: Applications of Orlicz Spaces. Marcel Dekker Inc, New York (2002)
Reifenberg E.: Solution of the Plateau problem for m-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960)
Scheven C.: Existence and Gradient Estimates in Nonlinear Problems with Irregular Obstacles. Habilitationsschrift Friedrich-Alexander-Universitat, Erlangen-Nurnberg (2011)
Scheven, C.: Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles. Manuscr. Math. doi:10.1007/s00229-014-0684-8
Toro T.: Doubling and flatness: geometry of measures. Not. Am. Math. Soc 44(9), 1087–1094 (1997)
Wang L., Yao F., Zhou S., Jia H.: Optimal regularity for the Poisson equation. Proc. Am. Math. Soc. 137(6), 2037–2047 (2009)
Yao F., Zhou S.: Linear second-order divergence equations in Lipschitz domains. J. Math. Anal. Appl. 344(1), 491–503 (2008)
Yao F.: Gradient estimates for parabolic A-harmonic equations. Nonlinear Anal. 74(4), 1200–1211 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (2009-0083521).
Rights and permissions
About this article
Cite this article
Byun, SS., Cho, Y. Nonlinear gradient estimates for parabolic obstacle problems in non-smooth domains. manuscripta math. 146, 539–558 (2015). https://doi.org/10.1007/s00229-014-0707-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00229-014-0707-5