Skip to main content
Log in

Nonlinear gradient estimates for parabolic obstacle problems in non-smooth domains

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We study a nonlinear parabolic equation with an irregular obstacle over a non-smooth domain and establish a global Calderón–Zygmund theory by proving that the spatial gradient of the weak solution is as integrable as both that of the obstacle and the nonhomogeneous term. Our results extend the known interior regularity for such obstacle problems in Lebesgue spaces to the boundary one in Orlicz spaces. The domain under consideration is a δ-Reifenberg domain which is a natural extension of a Lipschitz one with a small Lipschitz constant, while the function space under consideration is an Orlicz space which is a natural generalization of the Lebesgue space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Mingione G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baroni P.: Lorentz estimates for obstacle parabolic problems. Nonlinear Anal. 96, 167–188 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bögelein V., Duzaar F., Mingione G.: Degenerate problems with irregular obstacles. J. Reine Angew. Math. 650, 107–160 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Bögelein V., Parviainen M.: Self-improving property of nonlinear higher order parabolic systems near the boundary. Nonlinear Differ. Equ. Appl. 17(1), 21–54 (2010)

    Article  MATH  Google Scholar 

  5. Byun S.: Gradient estimates in Orlicz spaces for nonlinear elliptic equations with BMO nonlinearity in nonsmooth domains. Forum Math. 23(4), 693–711 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byun S., Cho Y.: Nonlinear gradient estimates for parabolic problems with irregular obstacles. Nonlinear Anal. 94, 32–44 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Byun, S., Cho, Y., Palagachev, D.: Global weighted estimates for nonlinear elliptic obstacle problems over Reifenberg domains. Proc. Am. Math. Soc. (in press)

  8. Byun S., Cho Y., Wang L.: Calderón-Zygmund theory for nonlinear elliptic problems with irregular obstacles. J. Funct. Anal. 263(10), 3117–3143 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Byun S., Ok J., Ryu S.: Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains. J. Differ. Equ. 254(11), 4290–4326 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Byun S., Ryu S.: Global weighted estimates for the gradient of solutions to nonlinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(2), 291–313 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Choe H., Lewis J.L.: On the obstacle problem for quasilinear elliptic equations of p Laplacian type. SIAM J. Math. Anal. 22(3), 623–638 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Choe H.: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114(4), 383–394 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Choe H.: On the regularity of parabolic equations and obstacle problems with quadratic growth nonlinearities. J. Differ. Equ. 102(1), 101–118 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. DiBenedetto E.: Degenerate Parabolic Equations. Universitext Springer, New York (1993)

    Book  MATH  Google Scholar 

  15. Erhardt A.: Calderón-Zygmund theory for parabolic obstacle problems with nonstandard growth. Adv. Nonlinear Anal. 3(1), 15–44 (2014)

    MATH  MathSciNet  Google Scholar 

  16. Fuchs M.: Hölder continuity of the gradient for degenerate variational inequalities. Nonlinear Anal. 15(1), 85–100 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jones P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147(1–2), 71–88 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kenig C., Toro T.: Free boundary regularity for harmonic measures and Poisson kernels. Ann. Math. 150(2), 369–454 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kokilashvili V., Krbec M.: Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co. Inc, River Edge NJ (1991)

    Book  MATH  Google Scholar 

  20. Lemenant A., Milakis E., Spinolo L.: Spectral stability estimates for the Dirichlet and Neumann Laplacian in rough domains. J. Funct. Anal. 264(9), 2097–2135 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lieberman G.M.: Regularity of solutions to some degenerate double obstacle problems. Indiana Univ. Math. J. 40(3), 1009–1028 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lindqvist P.: Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity. Nonlinear Anal. 12(11), 1245–1255 (1988)

    Article  MathSciNet  Google Scholar 

  23. Mingione G.: The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(2), 195–261 (2007)

    MATH  MathSciNet  Google Scholar 

  24. Mu J.: Higher regularity of the solution to the p-Laplacian obstacle problem. J. Differ. Equ. 95(2), 370–384 (1992)

    Article  MATH  Google Scholar 

  25. Norando T.: C 1,α local regularity for a class of quasilinear elliptic variational inequalities. Boll. Un. Mat. Ital. C(6) 5(1), 281–292 (1986)

    MATH  MathSciNet  Google Scholar 

  26. Rao M.M., Ren Z.D.: Theory of Orlicz Spaces. Marcel Dekker Inc, New York (1991)

    MATH  Google Scholar 

  27. Rao M.M., Ren Z.D.: Applications of Orlicz Spaces. Marcel Dekker Inc, New York (2002)

    MATH  Google Scholar 

  28. Reifenberg E.: Solution of the Plateau problem for m-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  29. Scheven C.: Existence and Gradient Estimates in Nonlinear Problems with Irregular Obstacles. Habilitationsschrift Friedrich-Alexander-Universitat, Erlangen-Nurnberg (2011)

    Google Scholar 

  30. Scheven, C.: Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles. Manuscr. Math. doi:10.1007/s00229-014-0684-8

  31. Toro T.: Doubling and flatness: geometry of measures. Not. Am. Math. Soc 44(9), 1087–1094 (1997)

    MATH  MathSciNet  Google Scholar 

  32. Wang L., Yao F., Zhou S., Jia H.: Optimal regularity for the Poisson equation. Proc. Am. Math. Soc. 137(6), 2037–2047 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yao F., Zhou S.: Linear second-order divergence equations in Lipschitz domains. J. Math. Anal. Appl. 344(1), 491–503 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yao F.: Gradient estimates for parabolic A-harmonic equations. Nonlinear Anal. 74(4), 1200–1211 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumi Cho.

Additional information

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (2009-0083521).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, SS., Cho, Y. Nonlinear gradient estimates for parabolic obstacle problems in non-smooth domains. manuscripta math. 146, 539–558 (2015). https://doi.org/10.1007/s00229-014-0707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0707-5

Mathematics Subject Classification

Navigation