Abstract
The purpose of this article is to generalize some results of Vatsal on the special values of Rankin–Selberg L-functions in an anticyclotomic \({\mathbb{Z}_{p}}\)-extension. Let g be a cuspidal Hilbert modular newform of parallel weight \({(2,\ldots,2)}\) and level \({\mathcal{N}}\) over a totally real field F, and let K/F be a totally imaginary quadratic extension of relative discriminant \({\mathcal{D}}\). We study the l-adic valuation of the special values \({L(g,\chi,\frac{1}{2})}\) as \({\chi}\) varies over the ring class characters of K of \({\mathcal{P}}\)-power conductor, for some fixed prime ideal \({\mathcal{P}}\) . We prove our results under the only assumption that the prime to \({\mathcal{P}}\) part of \({\mathcal{N}}\) is relatively prime to \({\mathcal{D}}\).
This is a preview of subscription content,
to check access.References
Bertolini M., Darmon H.: A rigid analytic Gross–Zagier formula and arithmetic applications. Ann. Math. 146(1), 111–147 (1997)
Cornut, C., Vatsal, V.: CM points and quaternion algebras. Doc. Math. 10, 263–309 (2005) (electronic)
Cornut, C., Vatsal, V.: Nontriviality of Rankin–Selberg L-functions and CM points. In: Burns, D., Buzzard, K., Nekovar, J. (eds). L-Functions and Galois Represenations, pp. 121–186. Cambridge University Press, Cambridge, MA (2007)
Feigon B., Whitehouse D.: Averages of central L-values of Hilbert modular forms with an application to subconvexity. Duke Math. J. 149, 347–410 (2009)
File, D., Martin, K., Pitale, A.: Test Vectors and Central L-Values for GL(2), arXiv:1310.1765 (2013)
Gross B.: Local orders, root numbers and modular curves. Am. J. Math. 110, 1153–1182 (1988)
Gross B., Prasad D.: Test vectors for linear forms. Math. Ann. 291, 243–355 (1991)
Hida H.: On p-adic L-functions of GL(2)\({\times}\) GL(2) over totally real fields. Ann. Inst. Fourier (Grenoble) 41, 311–391 (1991)
Jacquet H., Chen N.: Positivity of quadratic base change L-functions. Bulletin de la Societe Mathematique de France 129, 33–90 (2001)
Martin K., Whitehouse D.: Central L-values and toric periods for GL(2). IMRN 2009(1), 141–191 (2008)
Pollack R., Weston T.: On anticyclotomic \({\mu}\)-invariants of modular forms. Compos. Math. 147, 1353–1381 (2011)
Ratner M.: Raghunathan’s conjectures for Cartesian products of real and p-adic Lie groups. Duke Math. J. 77, 275–382 (1995)
Vatsal V.: Uniform distribution of Heegner points. Invent. Math. 148, 1–46 (2002)
Vatsal V.: Special values of anticyclotomic L-functions. Duke Math. J. 116(2), 219–261 (2003)
Vatsal V.: Special value formulae for Rankin L-functions. MSRI Publ. 49, 165–190 (2004)
Vignéras, M.-F.: Arithmétique des algèbres de quaternions. vol. 800, Springer Lecture Notes, (1980)
Waldspurger J.: Sur les valeurs de certaines fonctions L automorphes en leur centre de symmétrie. Compos. Math. 54, 174–242 (1985)
Washington, L.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, vol. 83. Springer, Berlin (1996)
Zhang S.: Gross–Zagier formula for GL(2). Asian J. Math. 5(2), 183–290 (2001)
Zhang S.: Heights of Heegner points on Shimura curves. Ann. Math. 153, 27–147 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hamieh, A. Special values of anticyclotomic L-functions modulo λ . manuscripta math. 145, 449–472 (2014). https://doi.org/10.1007/s00229-014-0696-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00229-014-0696-4