Skip to main content
Log in

Point configurations and translations

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

The spaces of point configurations on the projective line up to the action of \({{\rm SL}(2,\mathbb{K})}\) and its maximal torus are canonically compactified by the Grothdieck–Knudsen and Losev–Manin moduli spaces \({\overline{M}_{0,n}}\) and \({\overline{L}_n}\) respectively. We examine the configuration space up to the action of the maximal unipotent group \({\mathbb{G}_a \subseteq {\rm SL}(2,,\mathbb{K})}\) and define an analogous compactification. For this we first assign a canonical quotient to the action of a unipotent group on a projective variety. Moreover, we show that similar to \({\overline{M}_{0,n}}\) and \({\overline{L}_n}\) this quotient arises in a sequence of blow-ups from a product of projective spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox rings. arXiv:1003.4229v2 [math.AG], (2011)

  2. Arzhantsev I.V., Celik D., Hausen J.: Factorial algebraic group actions and categorical quotients. J. Algebra 387, 87–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arzhantsev I.V., Hausen J.: Geometric invariant theory via cox rings. J. Pure Appl. Algebr. 213, 154–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bäker, H.: On the Cox ring of blowing up the diagonal. preprint: arXiv:1402.5509

  5. Bäker, H., Hausen, J., Keicher, S.: On Chow quotients of torus actions. preprint: arXiv:1203.3759

  6. Berchtold F., Hausen J.: GIT-equivalence beyond the ample cone. Mich. Math. J. 54(3), 483–515 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox D.: The homogeneous coordinate ring of a toric variety. J. Algebr. Geom. 4(1), 17–50 (1995)

    MATH  Google Scholar 

  8. Dolgachev I.V., Hu Y.: Variation of geometric invariant theory quotients. Publications Mathematiques De L Ihes 87, 5–51 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doran, B., Kirwan, F.: Towards non-reductive geometric invariant theory. Pure Appl. Math. Q., 3 (1, part 3):61–105, (2007)

  10. Feichtner E.-M., Kozlov D.N.: Incidence combinatorics of resolutions. Selecta Math. (N.S.) 10(1), 37–60 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants And Multidimensional Determinants. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA. Reprint of the 1994 edition, (2008).

  12. Hausen, J.: Geometric invariant theory based on Weil divisors. Compos. Math. 140(6):1518–1536, (2004). MR2098400.

  13. Hausen J.: Cox rings and combinatorics II. Moscow Math. J. 8(4), 711–757 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Huggenberger, E.: Fano Varieties with Torus Action of Complexity One. Doctoral Thesis http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-69570

  15. Kapranov M., Sturmfels B., Zelevinsky A.: Quotients of toric varieties. Mathematische Annalen 290(4), 643–655 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kapranov, M.M.: Chow quotients of Grassmannians. I. In I. M. Gel’fand Seminar, volume 16 of Adv. Soviet Math., pp. 29–110. Am. Math. Soc., Providence, RI (1993). MR1237834

  17. Losev, A., Manin, Y.: New moduli spaces of pointed curves and pencils of flat connections. Michigan Math. J., 48, 443–472 (2000). Dedicated to William Fulton on the occasion of his 60th birthday.

  18. Shmelkin D.A.: First fundamental theorem for covariants of classical groups. Adv. Math. 167(2), 175–194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Speyer D., Sturmfels B.: The tropical Grassmannian. Adv. Geom. 4(3), 389–411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tevelev J.: Compactifications of subvarieties of tori. Am. J. Math. 129(4), 1087–1104 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Bäker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bäker, H. Point configurations and translations. manuscripta math. 146, 235–263 (2015). https://doi.org/10.1007/s00229-014-0692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0692-8

Mathematics Subject Classification

Navigation