Abstract
We study the ramification of fierce cyclic Galois extensions of a local field K of characteristic zero with a one-dimensional residue field of characteristic p > 0. Using Kato’s theory of the refined Swan conductor, we associate to such an extension a ramification datum, consisting of a sequence of pairs (δ i , ω i ), where δ i is a positive rational number and ω i a differential form on the residue field of K. Our main result gives necessary and sufficient conditions on such sequences to occur as a ramification datum of a fierce cyclic extension of K.
This is a preview of subscription content, access via your institution.
References
Abbes A., Saito T.: Ramification of local fields with imperfect residue field. Am. J. Math. 124, 879–920 (2002)
Cartier P.: Une nouvelles opération sur les formes différentielles. C. R. Acad. Sci. Paris 244, 426–428 (1957)
Epp H.P.: Eliminating wild ramification. Invent. math. 19, 235–249 (1973)
Garuti, M.A.: Linear systems attached to cyclic inertia. In: Arithmetic Fundamental Groups and Noncommutative Algebra (Berkeley, CA, 1999), volume 70 of Proceedings of Symposium in Pure Mathematics, pp. 377–386. American Mathematical Society (2002)
Hyodo, O.: Wild ramification in the imperfect residue field case. In: Galois Representations and Arithmetic Algebraic Geometry, Number 12 in Advanced Studies in Pure Mathematics, pp. 287–314 (1987)
Kato K.: A generalization of local class field theory by using K-groups, I. J. Fac. Sci. Univ. Tokyo Sec. IA 26, 303–376 (1979)
Kato K.: A generalization of local class field theory by using K-groups, II. J. Fac. Sci. Univ. Tokyo Sec. IA 27, 603–683 (1980)
Kato, K.: Galois cohomology of complete discrete valuation fields. In: Algebraic K-theory II, Number 967 in LNM, pp. 215–236. Springer (1982)
Kato, K.: Swan conductors with differential values. In: Galois Representations and Arithmetic Algebraic Geometry, Number 12 in Advanced Studies in Pure Mathematics, pp. 315–342 (1987)
Kato K.: Vanishing cycles, ramification of valuations, and class field theory. Duke Math. J. 55(3), 629–659 (1987)
Obus A., Pries R.: Wild tame-by-cyclic extensions. J. Pure Appl. Algebra 214(5), 565–573 (2010)
Obus, A., Wewers, S.: Cyclic extensions and the local lifting problem. Ann. Math. (to appear) arXiv:1203.5057 (2012)
Schmid H.L.: Zur Arithmetik der zyklischen p-Körper. J. Reine Angew. Math. 176, 161–167 (1937)
Serre J.-P.: Corps locaux. Hermann, Paris (1968)
Thomas L.: Ramification groups in Artin–Schreier–Witt extensions. J. Théorie des Nombres Bordeaux 17, 689–720 (2005)
Zhukov I.: On ramification theory in the imperfect residue field case. Sbornik Math. 194(12), 1747–1774 (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wewers, S. Fiercely ramified cyclic extensions of p-adic fields with imperfect residue field. manuscripta math. 143, 445–472 (2014). https://doi.org/10.1007/s00229-013-0630-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00229-013-0630-1
Mathematics Subject Classification (2000)
- 11S15
- 11S31
- 14F05
- 19F05