Skip to main content

Separating invariants for arbitrary linear actions of the additive group

Abstract

We consider an arbitrary representation of the additive group \({\mathbb{G}_a}\) over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Brouwer, A.: http://www.win.tue.nl/~aeb/math/invar.html

  2. 2

    Derksen H.: Computation of invariants for reductive groups. Adv. Math. 141(2), 366–384 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3

    Derksen, H., Kemper, G.: Computational invariant theory. Gamkrelidze, R.V., Popov, V.L. (eds.) Invariant Theory and Algebraic Transformation Groups, I. Encyclopaedia of Mathematical Sciences, vol. 130. Springer, Berlin (2002)

  4. 4

    Derksen H., Kemper G.: Computing invariants of algebraic groups in arbitrary characteristic. Adv. Math. 217(5), 2089–2129 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5

    Domokos M., Szabó E.: Helly dimension of algebraic groups. J. Lond. Math. Soc. (2) 84(1), 19–34 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. 6

    Elmer J., Kohls M.: Separating invariants for the basic \({\mathbb{G}_{a}}\) -actions. Proc. Am. Math. Soc. 140(1), 135–146 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. 7

    Fleischmann P.: The Noether bound in invariant theory of finite groups. Adv. Math. 156(1), 23–32 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. 8

    Fogarty, J.: On Noether’s bound for polynomial invariants of a finite group. Electron. Res. Announc. Am. Math. Soc. 7: 5–7; (electronic) (2001)

    Google Scholar 

  9. 9

    Hilbert, D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge (1993). Translated from the German and with a preface by Reinhard C. Laubenbacher, Edited and with an introduction by Bernd Sturmfels

  10. 10

    Kemper G.: Calculating invariant rings of finite groups over arbitrary fields. J. Symb. Comput. 21(3), 351–366 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11

    Kemper G.: Computing invariants of reductive groups in positive characteristic. Transform. Groups 8(2), 159–176 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. 12

    Khoury J.: A Groebner basis approach to solve a conjecture of Nowicki. J. Symb. Comput. 43(12), 908–922 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. 13

    Nagata M.: On the 14-th problem of Hilbert. Am. J. Math. 81, 766–772 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14

    Nowicki A.: Polynomial Derivations and Their Rings of Constants. Uniwersytet Mikołaja Kopernika, Toruń (1994)

    MATH  Google Scholar 

  15. 15

    Olver P.J.: Classical Invariant Theory, Volume 44 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  16. 16

    Richman D.R.: On vector invariants over finite fields. Adv. Math. 81(1), 30–65 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17

    Roberts M.: On the covariants of a binary quantic of the nth degree. Q. J. Pure Appl. Math. 4, 168–178 (1861)

    Google Scholar 

  18. 18

    van den Essen A.: An algorithm to compute the invariant ring of a G a -action on an affine variety. J. Symb. Comput. 16(6), 551–555 (1993)

    Google Scholar 

  19. 19

    Wehlau, D.: Weitzenböck derivations of nilpotency 3. Forum Math. (2011). doi:10.1515/forum-2011-0038

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Müfit Sezer.

Additional information

Müfit Sezer is supported by a grant from TÜBITAK: 112T113.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dufresne, E., Elmer, J. & Sezer, M. Separating invariants for arbitrary linear actions of the additive group. manuscripta math. 143, 207–219 (2014). https://doi.org/10.1007/s00229-013-0625-y

Download citation

Mathematics Subject Classification (1991)

  • 13A50