Advertisement

Manuscripta Mathematica

, Volume 143, Issue 1–2, pp 207–219 | Cite as

Separating invariants for arbitrary linear actions of the additive group

  • Emilie Dufresne
  • Jonathan Elmer
  • Müfit SezerEmail author
Article

Abstract

We consider an arbitrary representation of the additive group \({\mathbb{G}_a}\) over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

Mathematics Subject Classification (1991)

13A50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Derksen H.: Computation of invariants for reductive groups. Adv. Math. 141(2), 366–384 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Derksen, H., Kemper, G.: Computational invariant theory. Gamkrelidze, R.V., Popov, V.L. (eds.) Invariant Theory and Algebraic Transformation Groups, I. Encyclopaedia of Mathematical Sciences, vol. 130. Springer, Berlin (2002)Google Scholar
  4. 4.
    Derksen H., Kemper G.: Computing invariants of algebraic groups in arbitrary characteristic. Adv. Math. 217(5), 2089–2129 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Domokos M., Szabó E.: Helly dimension of algebraic groups. J. Lond. Math. Soc. (2) 84(1), 19–34 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Elmer J., Kohls M.: Separating invariants for the basic \({\mathbb{G}_{a}}\) -actions. Proc. Am. Math. Soc. 140(1), 135–146 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fleischmann P.: The Noether bound in invariant theory of finite groups. Adv. Math. 156(1), 23–32 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fogarty, J.: On Noether’s bound for polynomial invariants of a finite group. Electron. Res. Announc. Am. Math. Soc. 7: 5–7; (electronic) (2001)Google Scholar
  9. 9.
    Hilbert, D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge (1993). Translated from the German and with a preface by Reinhard C. Laubenbacher, Edited and with an introduction by Bernd SturmfelsGoogle Scholar
  10. 10.
    Kemper G.: Calculating invariant rings of finite groups over arbitrary fields. J. Symb. Comput. 21(3), 351–366 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kemper G.: Computing invariants of reductive groups in positive characteristic. Transform. Groups 8(2), 159–176 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Khoury J.: A Groebner basis approach to solve a conjecture of Nowicki. J. Symb. Comput. 43(12), 908–922 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Nagata M.: On the 14-th problem of Hilbert. Am. J. Math. 81, 766–772 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Nowicki A.: Polynomial Derivations and Their Rings of Constants. Uniwersytet Mikołaja Kopernika, Toruń (1994)zbMATHGoogle Scholar
  15. 15.
    Olver P.J.: Classical Invariant Theory, Volume 44 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  16. 16.
    Richman D.R.: On vector invariants over finite fields. Adv. Math. 81(1), 30–65 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Roberts M.: On the covariants of a binary quantic of the nth degree. Q. J. Pure Appl. Math. 4, 168–178 (1861)Google Scholar
  18. 18.
    van den Essen A.: An algorithm to compute the invariant ring of a G a-action on an affine variety. J. Symb. Comput. 16(6), 551–555 (1993)Google Scholar
  19. 19.
    Wehlau, D.: Weitzenböck derivations of nilpotency 3. Forum Math. (2011). doi: 10.1515/forum-2011-0038

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BaselBaselSwitzerland
  2. 2.Department of MathematicsUniversity of Aberdeen, King’s CollegeAberdeenScotland, UK
  3. 3.Department of MathematicsBilkent UniversityAnkaraTurkey

Personalised recommendations