Abstract
Using the concept of inner integral curves defined by Hirschowitz we generalize a recent result by Kim, Levenberg and Yamaguchi concerning the obstruction of a pseudoconvex domain spread over a complex homogeneous manifold to be Stein. This is then applied to study the holomorphic reduction of pseudoconvex complex homogeneous manifolds X = G/H. Under the assumption that G is solvable or reductive we prove that X is the total space of a G-equivariant holomorphic fiber bundle over a Stein manifold such that all holomorphic functions on the fiber are constant.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Barth W., Otte M.: Über fast-uniforme Untergruppen komplexer Liegruppen und auflösbare komplexe Mannigfaltigkeiten. Comment. Math. Helv. 44, 269–281 (1969)
Barth W., Otte M.: Invariante holomorphe Funktionen auf reduktiven Liegruppen. Math. Ann. 201, 97–112 (1973)
Berteloot F.: Existence d’une structure kählérienne sur les variétés homogènes semi-simples. C. R. Acad. Sci. Paris Sér. I Math. 305(19), 809–812 (1987)
Berteloot F., Oeljeklaus K.: Invariant plurisubharmonic functions and hypersurfaces on semisimple complex Lie groups. Math. Ann. 281(3), 513–530 (1988)
Borel, A.: Linear algebraic groups, 2nd edn., Graduate Texts in Mathematics, vol. 126, pp. xii+288. Springer, New York (1991)
Borel A., Remmert R.: Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann. 145(62), 429–439 (1961)
Cœuré, G., Loeb, J.J: A counterexample to the Serre problem with a bounded domain of \({\mathbb{C}^{2}}\) as fiber. Ann. Math.(2) 122(2), 329–334 (1985)
Fujita R.: Domaines sans point critique intérieur sur l’espace projectif complexe. J. Math. Soc. Jpn. 15, 443–473 (1963)
Gilligan B., Miebach C., Oeljeklaus K.: Homogeneous Kähler and Hamiltonian manifolds. Math. Ann. 349(4), 889–901 (2011)
Heinzner P., Iannuzzi A.: Integration of local actions on holomorphic fiber spaces. Nagoya Math. J. 146, 31–53 (1997)
Hirschowitz A.: Pseudoconvexité au-dessus d’espaces plus ou moins homogènes. Invent. Math. 26, 303–322 (1974)
Hirschowitz A.: Le problème de Lévi pour les espaces homogènes. Bull. Soc. Math. France 103(2), 191–201 (1975)
Hofmann K.H., Mukherjea A.: On the density of the image of the exponential function. Math. Ann. 234(3), 263–273 (1978)
Holmann, H.: On the stability of holomorphic foliations with all leaves compact, Variétés analytiques compactes (Colloq., Nice, 1977), pp. 217–248, Lecture Notes in Math., vol. 683. Springer, Berlin (1978)
Huckleberry, A.: Remarks on homogeneous complex manifolds satisfying Levi conditions. Boll. Unione Mat. Ital. (9) 3(1), 1–23 (2010)
Huckleberry, A.T., Oeljeklaus, E.: Homogeneous spaces from a complex analytic viewpoint, Manifolds and Lie groups (Notre Dame, Ind., 1980), Progr. Math., vol. 14, pp. 159–186. Birkhäuser, Boston (1981)
Huckleberry A.T., Oeljeklaus E.: On holomorphically separable complex solv-manifolds. Ann. Inst. Fourier (Grenoble) 36(3), 57–65 (1986)
Kim K.T., Levenberg N., Yamaguchi H.: Robin functions for complex manifolds and applications. Mem. Am. Math. Soc. 209(984), viii–111 (2011)
Kiselman C.O.: The partial Legendre transformation for plurisubharmonic functions. Invent. Math. 49(2), 137–148 (1978)
Loeb J.J.: Action d’une forme réelle d’un groupe de Lie complexe sur les fonctions plurisousharmoniques. Ann. Inst. Fourier (Grenoble) 35(4), 59–97 (1985)
Matsushima Y.: Sur les espaces homogènes kählériens d’un groupe de Lie réductif. Nagoya Math. J. 11, 53–60 (1957)
Matsushima Y.: Espaces homogènes de Stein des groupes de Lie complexes. Nagoya Math. J. 16, 205–218 (1960)
Millson, J.: On the first Betti number of a constant negatively curved manifold. Ann. Math. (2) 104(2), 235–247 (1976)
Nishino, T.: Sur les espaces analytiques holomorphiquement complets. J. Math. Kyoto Univ. 1, 247–254 (1961/1962)
Oeljeklaus K., Toma M.: Non-Kähler compact complex manifolds associated to number fields. Ann. Inst. Fourier (Grenoble) 55(1), 161–171 (2005)
Onishchik, A.L.: Complex hulls of compact homogeneous spaces, Dokl. Akad. Nauk SSSR 130, 726–729 (1960); English trans.: Sov. Math. 1 (1960), 88–93
Takeuchi A.: Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif. J. Math. Soc. Jpn. 16, 159–181 (1964)
Ueda T.: Pseudoconvex domains over Grassmann manifolds. J. Math. Kyoto Univ. 20, 391–394 (1980)
Zaffran D.: Holomorphic functions on bundles over annuli. Math. Ann. 341(4), 717–733 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gilligan, B., Miebach, C. & Oeljeklaus, K. Pseudoconvex domains spread over complex homogeneous manifolds. manuscripta math. 142, 35–59 (2013). https://doi.org/10.1007/s00229-012-0592-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00229-012-0592-8