Skip to main content
Log in

Brill-Noether loci and generated torsionfree sheaves over nodal and cuspidal curves

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We determine (semi)stability of kernels of evaluation maps of globally generated torsion-free sheaves on a nodal and cuspidal curve in some important cases. We use them to study Brill-Noether loci for torsion-free sheaves with slope μ less than two. The conditions for nonemptiness and singular sets of Brill-Noether loci are determined. Explicit descriptions of Brill-Noether loci are given in some cases. We also apply our results to study (semi)stability properties of the restrictions of the Picard bundle E d (on the compactified Jacobian) to the images of Y in the compactified Jacobian for certain embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhosle U.N.: Generalised parabolic bundles and applications to torsion-free sheaves on nodal curves. Arkiv Matematik 30(2), 187–215 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhosle U.N.: Maximal subsheaves of torsion-free sheaves on nodal curves. J. Lond. Math. Soc. 74, 59–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhosle U.N.: Brill-Noether theory on nodal curves. Int. J. Math. 18(10), 1133–1150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhosle, U.N., Parameswaran, A.J.: Picard bundles and Brill-Noether loci on the compactified Jacobian of a nodal curve. TIFR Preprint 2009. arXiv:0903. 4966v1[math.AG]. Accessed 28 March 2009

  5. Butler D.: Normal generation of vector bundles over a curve. J. Differ. Geo. 39, 1–34 (1994)

    MATH  Google Scholar 

  6. D’Souza C.: Compactifications of generalised Jacobians. Proc. Indian Acad. Sci. Sect A 88(5), 419–457 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Esteves E., Gagné M., Kleiman S.: Autoduality of the compactified Jacobian. J. Lond. Math. Soc. 65(2), 591–610 (2002)

    Article  MATH  Google Scholar 

  8. Laumon G.: Fibreś vectoriels spećiaux. Bull. de la Soc. Math. de France. 119, 97–119 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Mercat, V.: La probl‘eme de Brill-Noether, presentation. http://www.bnt.math.jussieu.fr. Accessed 5 Jan 2001

  10. Mercat V.: Le Problème de Brill-Noether por des fibrés stables de petite pente. J. Reine Angew. Math. 506, 1–41 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Paranjape, K., Ramanan, S.: On the canonical ring of a curve. In: Algebraic Geometry and Commutative Algebra, in Honour of Masayoshi Nagata. vol. 2, pp. 503–516. Kinokuniya (1987)

  12. Rego, C. J.: Deformation of modules on curves and surfaces. Singularities, representatation of algebras, and vector bundles. In: Proceedings and Lecturer Notes in Mathematics, vol. 1273, pp. 157–167. Springer, Lambrecht (1985)

  13. Seshadri C.S.: Fibrés vectoriels sur les courbes algébriques. Astérisque 96, 1–209 (1982)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha N. Bhosle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhosle, U.N., Singh, S.K. Brill-Noether loci and generated torsionfree sheaves over nodal and cuspidal curves. manuscripta math. 141, 241–271 (2013). https://doi.org/10.1007/s00229-012-0571-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-012-0571-0

Mathematics Subject Classification (1991)

Navigation