Skip to main content
Log in

Global compactness for a class of quasi-linear elliptic problems

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We prove a global compactness result for Palais-Smale sequences associated with a class of quasi-linear elliptic equations on exterior domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcoya D., Boccardo L.: Critical points for multiple integrals of the calculus of variations. Arch. Ration. Mech. Anal. 134, 249–274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aris, R.: Mathematical modeling techniques. Res. Notes in Math., vol. 24. Pitman, Boston (1979)

  3. Benci V., Cerami G.: Positive solutions of some nonlinear elliptic problems in exterior domains. Arch. Ration. Mech. Anal. 99, 283–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benci V., D’Avenia P., Fortunato D., Pisani L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154, 297–324 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis H., Lieb E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cherfils L., Ilyasov Y.: On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Dal Maso G., Murat F.: Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems. Nonlinear Anal. 31, 405–412 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Degiovanni M., Lancelotti S.: Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity. Ann. I. H. Poincaré 24, 907–919 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Degiovanni M., Musesti A., Squassina M.: On the regularity of solutions in the Pucci-Serrin identity. Calc. Var. Partial Differ. Equ. 18, 317–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Derrick G.H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252–1254 (1964)

    Article  MathSciNet  Google Scholar 

  11. Fife, P.: Mathematical aspects of reacting and diffusing systems. Lecture Notes in Biomathematics, vol. 28. Springer, Berlin (1979)

  12. Filippucci R.: Existence of global solutions of elliptic systems. J. Math. Anal. Appl. 293, 677–692 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Filippucci R.: Entire radial solutions of elliptic systems and inequalities of the mean curvature type. J Math. Anal. Appl. 334, 604–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Filippucci R., Pucci P., Rigoli M.: Nonlinear weighted p-Laplacian elliptic inequalities with gradient terms. Commun. Contemp. Math. 12, 501–535 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. Henri Poincar ’e Anal. Non Lineaire 1, 109–145 and 223–283 (1984)

    Google Scholar 

  16. Mercuri C., Willem M.: A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete Contin. Dyn. Syst. 28, 469–493 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pucci P., Serrin J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Squassina M.: Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems. Electron. J. Differ. Equ. Monogr. 7, +213 (2006)

    MathSciNet  Google Scholar 

  19. Wilhelmsson H.: Explosive instabilities of reaction-diffusion equations. Phys. Rev. A 36, 965–966 (1987)

    Article  MathSciNet  Google Scholar 

  20. Yu L.S.: Nonlinear p-Laplacian problems on unbounded domains. Proc. AMS 115, 1037–1045 (1992)

    MATH  Google Scholar 

  21. Willem, M.: Minimax Theorems. Birkhauser (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Squassina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercuri, C., Squassina, M. Global compactness for a class of quasi-linear elliptic problems. manuscripta math. 140, 119–144 (2013). https://doi.org/10.1007/s00229-012-0533-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-012-0533-6

Mathematics Subject Classification (2000)

Navigation