Skip to main content
Log in

Alternate compactifications of the moduli space of genus one maps

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We extend the definition of an m-stable curve introduced by Smyth to the setting of maps to a projective variety X, generalizing the definition of a Kontsevich stable map in genus one. We prove that the moduli problem of n-pointed m-stable genus one maps of class β is representable by a proper Deligne–Mumford stack \({\overline{\mathcal {M}}_{1,n}^{m}(X,\beta)}\) over Spec \({\mathbb {Z}[1/6]}\) . For \({X=\mathbb {P}^{r},}\) we show that \({\overline{\mathcal {M}}_{1,n}^{m}(\mathbb {P}^{r},d)}\) is irreducible for m sufficiently large. We also show that \({\overline{\mathcal {M}}_{1,n}^{m}(\mathbb {P}^r,d)}\) is smooth if d + nm ≤ 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev V., Guy G.M.: Moduli of weighted stable maps and their gravitational descendants. J. Inst. Math. Jussieu 7(3), 425–456 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin M.: Versal deformations and algebraic stacks. Invent. Math. 27, 165–189 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayer A., Manin Yu.: Stability conditions, wall-crossing and weighted Gromov– Witten invariants. Mosc. Math. J. 9(1), 3–32 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Behrend K., Manin Yu.: Stacks of stable maps and Gromov–Witten invariants. Duke Math. J. 85(1), 1–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cox D., Katz S.: Mirror Symmetry and Algebraic Geometry. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  6. Deligne P., Mumford D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36(1), 75–109 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fantechi B. et al.: Fundamental Algebraic Geometry. American Mathematical Society, Providence (2006)

    Google Scholar 

  8. Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In: Algebraic Geometry—Santa Cruz 1995. Proceedings of Symposia in Pure Mathematics, vol. 62, Part 2. American Mathematical Society, Providence, pp. 45–96 (1997)

  9. Grothendieck, A.: Éléments de géometrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math. 24, 231 (1965)

  10. Harris J., Morrison I.: Moduli of Curves. Graduate Texts in Mathematics, vol. 187. Springer, New York (1998)

    Google Scholar 

  11. Hassett B.: Moduli spaces of weighted pointed stable curves. Adv. Math. 173(2), 316–352 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hassett B., Hyeon D.: Log canonical models for the moduli space of curves: the first divisorial contraction. Trans. Am. Math. Soc. 361(8), 4471–4489 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kim, B.: Logarithmic stable maps. arXiv:0807.3611v2

  14. Kim, B., Kresch, A., Oh., Y.-G.: A compactification of the space of maps from curves. preprint. arXiv:1105.6143v1

  15. Kollár J.: Projectivity of complete moduli. J. Differ. Geom. 32, 235–268 (1990)

    MATH  Google Scholar 

  16. Kollár, J.: Rational Curves on Algebraic Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32. Springer-Verlag, Berlin (1996)

  17. Kontsevich, M.: Enumeration of rational curves via torus actions. In: The Moduli Space of Curves, Texel Island, 1994. Progress in Mathematics, vol. 129, Birkhäuser, Boston, pp. 335–368 (1995)

  18. Laumon G., Moret-Bailly L.: Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete, 39. Springer-Verlag, Berlin (1996)

    Google Scholar 

  19. Marian, A., Oprea, D., Pandharipande, R.: The moduli space of stable quotients. arXiv:0904.2992v2

  20. Mumford D., Fogarty J., Kirwan F.: Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 34. Springer-Verlag, Berlin (1991)

    Google Scholar 

  21. Musta¸ă A.: The Chow ring of \({\overline{M}_{0,m}(\mathbb {P}^{n},d)}\) . J. Reine Angew. Math. 615, 93–119 (2008)

    Article  MathSciNet  Google Scholar 

  22. Schubert D.: A new compactification of the moduli space of curves. Compos. Math. 78(3), 297–313 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Smyth, D.: Modular compactifications of \({\mathcal {M}_{1,n}}\) I. arXiv:0808.0177v2

  24. Smyth, D.: Modular compactifications of \({\mathcal {M}_{1,n}}\) II. arXiv:1005.1083v1

  25. Smyth, D.: Towards a classification of modular compactifications of \({\mathcal{M}_{g,n}}\) . arXiv:0902.3690v1

  26. Vakil R.: The enumerative geometry of rational and elliptic curves in projective space. J. Reine Angew. Math. 529, 101–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vakil R., Zinger A.: A natural smooth compactification of the space of elliptic curves in projective space. Electron. Res. Announc. Am. Math. Soc. 13, 53–59 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vakil R., Zinger A.: A desingularization of the main component of the moduli space of genus-one stable maps into \({\mathbb {P}^n}\) . Geom. Topol. 12(1), 1–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Viscardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viscardi, M. Alternate compactifications of the moduli space of genus one maps. manuscripta math. 139, 201–236 (2012). https://doi.org/10.1007/s00229-011-0513-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0513-2

Mathematics Subject Classification (2000)

Navigation