Advertisement

Manuscripta Mathematica

, Volume 137, Issue 3–4, pp 497–523 | Cite as

Isotropic subspaces in symmetric composition algebras and Kummer subspaces in central simple algebras of degree 3

  • Eliyahu Matzri
  • Uzi VishneEmail author
Article

Abstract

The maximal isotropic subspaces in split Cayley algebras were classified by van der Blij and Springer in Nieuw Archief voor Wiskunde VIII(3):158–169, 1960. Here we translate this classification to arbitrary composition algebras. We study intersection properties of such spaces in a symmetric composition algebra, and prove two triality results: one for two-D isotropic spaces, and another for isotropic vectors and maximal isotropic spaces. We bound the distance between isotropic spaces of various dimensions, and study the strong orthogonality relation on isotropic vectors, with its own bound on the distance. The results are used to classify maximal p-central subspaces in central simple algebras of degree p = 3. We prove various linkage properties of maximal p-central spaces and p-central elements. Analogous results are obtained for symmetric p-central elements with respect to an involution of the second kind inverting a third root of unity.

Mathematics Subject Classification (2000)

17A75 16K20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert A.A.: Structure of Algebras, vol. XXIV. American Mathematical Society Colloquium publications, Providence (1961)Google Scholar
  2. 2.
    Elduque A.: A note on triality and symmetric compositions. Abh. Math. Sem. Univ. Hamburg 70, 125–135 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Haile D.E.: A useful proposition for division algebra of small degree. Proc. Am. Math. Soc. 106(2), 317–319 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Haile D.E., Knus M.A.: On division algebras of degree 3 with involution. J. Algebra 184(3), 1073–1081 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Haile D., Kuo J.-M., Tignol J.-P.: On chains in division algebras of degree 3. C. R. Acad. Sci. Paris I 347, 849–852 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Knus M.A., Merkurjev A., Rost M., Tignol J.-P.: The Book of Involutions, vol. 44. American Mathematical Society Colloquium publications, Providence (1998)Google Scholar
  7. 7.
    Matzri, E.: The structure of division algebras, PhD thesis, Bar-Ilan University (2009)Google Scholar
  8. 8.
    Raczek, M.: Ternary cubic forms and central simple algebras of degree 3, PhD thesis, Université Catholique de Louvain (2007)Google Scholar
  9. 9.
    Raczek M.: On ternary cubic forms that determine central simple algebras of degree 3. J. Algebra 322, 1803–1818 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Rost, M.: The chain lemma for Kummer elements of degree 3. C. R. Acad. Sci. Paris I 328, 185–190 (1999)Google Scholar
  11. 11.
    Schafer R.D.: An Introduction to Nonassociative Algebras. Academic Press, San Diego (1966)zbMATHGoogle Scholar
  12. 12.
    van der Blij F., Springer T.A.: Octaves and triality. Nieuw Archief voor Wiskunde VIII(3), 158–169 (1960)MathSciNetGoogle Scholar
  13. 13.
    Vishne U.: Generators of central simple p-algebras of degree 3. Israel J. Math. 129, 175–188 (2002)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations