Manuscripta Mathematica

, Volume 137, Issue 3–4, pp 497–523

# Isotropic subspaces in symmetric composition algebras and Kummer subspaces in central simple algebras of degree 3

• Eliyahu Matzri
• Uzi Vishne
Article

## Abstract

The maximal isotropic subspaces in split Cayley algebras were classified by van der Blij and Springer in Nieuw Archief voor Wiskunde VIII(3):158–169, 1960. Here we translate this classification to arbitrary composition algebras. We study intersection properties of such spaces in a symmetric composition algebra, and prove two triality results: one for two-D isotropic spaces, and another for isotropic vectors and maximal isotropic spaces. We bound the distance between isotropic spaces of various dimensions, and study the strong orthogonality relation on isotropic vectors, with its own bound on the distance. The results are used to classify maximal p-central subspaces in central simple algebras of degree p = 3. We prove various linkage properties of maximal p-central spaces and p-central elements. Analogous results are obtained for symmetric p-central elements with respect to an involution of the second kind inverting a third root of unity.

17A75 16K20

## References

1. 1.
Albert A.A.: Structure of Algebras, vol. XXIV. American Mathematical Society Colloquium publications, Providence (1961)Google Scholar
2. 2.
Elduque A.: A note on triality and symmetric compositions. Abh. Math. Sem. Univ. Hamburg 70, 125–135 (2000)
3. 3.
Haile D.E.: A useful proposition for division algebra of small degree. Proc. Am. Math. Soc. 106(2), 317–319 (1989)
4. 4.
Haile D.E., Knus M.A.: On division algebras of degree 3 with involution. J. Algebra 184(3), 1073–1081 (1996)
5. 5.
Haile D., Kuo J.-M., Tignol J.-P.: On chains in division algebras of degree 3. C. R. Acad. Sci. Paris I 347, 849–852 (2009)
6. 6.
Knus M.A., Merkurjev A., Rost M., Tignol J.-P.: The Book of Involutions, vol. 44. American Mathematical Society Colloquium publications, Providence (1998)Google Scholar
7. 7.
Matzri, E.: The structure of division algebras, PhD thesis, Bar-Ilan University (2009)Google Scholar
8. 8.
Raczek, M.: Ternary cubic forms and central simple algebras of degree 3, PhD thesis, Université Catholique de Louvain (2007)Google Scholar
9. 9.
Raczek M.: On ternary cubic forms that determine central simple algebras of degree 3. J. Algebra 322, 1803–1818 (2009)
10. 10.
Rost, M.: The chain lemma for Kummer elements of degree 3. C. R. Acad. Sci. Paris I 328, 185–190 (1999)Google Scholar
11. 11.
Schafer R.D.: An Introduction to Nonassociative Algebras. Academic Press, San Diego (1966)
12. 12.
van der Blij F., Springer T.A.: Octaves and triality. Nieuw Archief voor Wiskunde VIII(3), 158–169 (1960)
13. 13.
Vishne U.: Generators of central simple p-algebras of degree 3. Israel J. Math. 129, 175–188 (2002)