Advertisement

Manuscripta Mathematica

, Volume 137, Issue 3–4, pp 347–382 | Cite as

Extrinsic homogeneity of parallel submanifolds

  • Tillmann JentschEmail author
Article
  • 56 Downloads

Abstract

We consider parallel submanifolds M of a Riemannian symmetric space N and study the question whether M is extrinsically homogeneous in N, i.e. whether there exists a subgroup of the isometry group of N which acts transitively on M. Provided that N is of compact or non-compact type, we establish the extrinsic homogeneity of every complete irreducible parallel submanifold of N whose dimension is at least three and which is not contained in any flat of N.

Mathematics Subject Classification (2010)

53C35 53C40 53C42 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berndt J., Console S., Olmos C.: Submanifolds and Holonomy, vol. 434. Chapman & Hall, Boca Raton (2003)CrossRefGoogle Scholar
  2. 2.
    Besse A.L.: Einstein Manifolds. Springer, Berlin (1987)zbMATHGoogle Scholar
  3. 3.
    Console S.: Infinitesimally extrinsically homogeneous submanifolds. Ann. Glob. Anal. Geom. 12, 313–334 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Crittenden R.J.: Minimum and conjugate points in symmetric spaces. Can. J. Math. 14, 320–328 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dombrowski P.: Differentiable maps into Riemannian manifolds of constant stable osculating rank, part 1. J. Reine Angew. Math. 274/275, 310–341 (1975)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Eschenburg J.-H.: Parallelity and extrinsic homogeneity. Math. Z. 229, 339–347 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ferus D.: Immersions with parallel second fundamental form. Math. Z. 140, 87–93 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ferus D.: Symmetric submanifolds of euclidian space. Math. Ann. 247, 81–93 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Greub W., Halperin S., Vanstone R.: Connections, Curvature and Cohomology, vol. I–III. Academic Press, New York (1976)Google Scholar
  10. 10.
    Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces, vol. 34. American Mathematical Society, Providence (2001)Google Scholar
  11. 11.
    Jentsch T.: The extrinsic holonomy Lie algebra of a parallel submanifold. Ann. Glob. Anal. Geom. 38, 335–371 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Jentsch T., Reckziegel H.: Submanifolds with parallel second fundamental form studied via the Gauß map. Ann. Glob. Anal. Geom. 29, 51–93 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Klein S.: Totally geodesic submanifolds of the complex quadric. Differ. Geom. Appl. 26((1), 79–96 (2008)zbMATHCrossRefGoogle Scholar
  14. 14.
    Klingenberg W.: Riemannian Geometry. Walter de Gruyter, Berlin (1982)zbMATHGoogle Scholar
  15. 15.
    Knapp A.W.: Lie Groups: Beyond an Introduction. Birkhäuser, Boston (1996)zbMATHGoogle Scholar
  16. 16.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vols. 1, 2. Interscience Publications, New York (1963/1969)Google Scholar
  17. 17.
    Mashimo K., Tojo K.: Circles in Riemannian symmetric spaces. Kodai Math. J. 22, 1–14 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Naitoh H.: Symmetric submanifolds of compact symmetric spaces. Tsukuba J. Math. 10, 215–242 (1986)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Nomizu K., Yano K.: On circles and spheres in Riemannian geometry. Math. Ann. 210, 163–170 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Quast P.: ‘Spindles’ in symmetric spaces. J. Math. Soc. Jpn. 58(4), 985–994 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Strübing W.: Symmetric submanifolds of Riemannian manifolds. Math. Ann. 245, 37–44 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tsukada K.: Parallel submanifolds of Hermitian symmetric spaces. Math. Z. 190, 129–150 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Varadarajan V.S.: Lie Groups, Lie Algebras, and their Representations. Springer, New York (1984)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Bergisch GladbachGermany

Personalised recommendations