Skip to main content
Log in

Quasi-isometries between visual hyperbolic spaces

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We prove that a power quasi-symmetric (or PQ-symmetric) homeomorphism between two complete metric spaces can be extended to a quasi-isometry between their hyperbolic approximations. This result can be used to prove that two visual Gromov hyperbolic spaces are quasi-isometric if and only if there is a PQ-symmetric homeomorphism between their boundaries with bounded visual metrics. Also, in the case of trees, we prove that two geodesically complete trees are quasi-isometric if and only if there is a PQ-symmetric homeomorphism between their boundaries with visual metrics based at infinity. We also give a characterization for a map to be PQ-symmetric based on the relative distortion of subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bestvina M.: \({\mathbb{R}}\) -trees in topology, geometry and group theory. In: Daverman, R.J., Sher, R.B. (eds) Handbook of Geometric Topology, pp. 55–91. North-Holland, Amsterdam (2002)

    Google Scholar 

  2. Bridson M., Haefliger A.: Metric Spaces of Non-Positive Curvature. Springer-Verlag, Berlin (1999)

    MATH  Google Scholar 

  3. Bonk M., Schramm O.: Embeddings of Gromov hyperbolic spaces. Geom. Funct. Anal. 10, 266–306 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buyalo S., Schroeder V.: Elements of Asymptotic Geometry. EMS Monographs in Mathematics. EMS Publishing House, Zurich (2007)

    Book  MATH  Google Scholar 

  5. Foertsch T., Schroeder V.: Hyperbolicity, CAT(−1)-spaces and the Ptolemy Inequality. Math. Ann. 350(2), 339–356 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gyhs E., de la Harpe P.: Sur le groupes hyperboliques d’après Mikhael Gromov. Progr. Math. 83. Birkhäuser, Boston (1990)

    Google Scholar 

  7. Gromov M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory. Math. Sci. Res. Inst. Publ. 8, pp. 75–263. Springer-Verlag, New York (1987)

    Google Scholar 

  8. Heinonen J.: Lectures on Analysis on Metric Spaces, Universitext. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  9. Hughes B.: Trees and ultrametric spaces: a categorical equivalence. Adv. Math. 189, 148–191 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hughes B., Martinez-Perez A., Morón M.A.: Bounded distortion homeomorphisms on ultrametric spaces. Ann. Acad. Sci. Fenn. 35, 473–492 (2010)

    Article  MATH  Google Scholar 

  11. Jordi J.: Interplay between interior and boundary geometry in Gromov hyperbolic spaces. Geom. Dedicata. 149, 129–154 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Martinez-Perez, A.: Quasi-isometries between visual hyperbolic spaces. arXiv:0810. 4505 [math.GT]

  13. Martinez-Perez A., Morón M.A.: Uniformly continuous maps between ends of \({\mathbb{R}}\) -trees. Math. Z. 263(3), 583–606 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Paulin F.: Un groupe hyperbolique est déterminé par son bord. J. London Math. Soc. 54(2), 50–74 (1996)

    MATH  MathSciNet  Google Scholar 

  15. Tukia P., Väisälä J.: Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5(1), 97–114 (1980)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Martínez-Pérez.

Additional information

Partially supported by MTM-2009-07030.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Pérez, Á. Quasi-isometries between visual hyperbolic spaces. manuscripta math. 137, 195–213 (2012). https://doi.org/10.1007/s00229-011-0463-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0463-8

Mathematics Subject Classification (2000)

Navigation