Abstract
If π f is a cuspidal automorphic representation of \({GL_{2/\mathbb{Q}}}\) associated to a modular form f, the local and global Langlands correspondences are compatible at all finite places of \({\mathbb{Q}}\). On the p-adic Coleman–Mazur eigencurve this principle can fail (away from p) under one of two conditions: on a generically principal series component where monodromy vanishes; or on a generically special component where the ratio of the Satake parameters degenerates. We prove, under mild restrictive hypotheses, that such points are the intersection of generically principal series and special components. This is a geometric analogue of Ribet’s level raising and lowering theorems.
Similar content being viewed by others
References
Bellaïche, J. and Chenevier, G.: Families of Galois Representations and Selmer Groups. Asterisque 324 (2009)
Berger L.: Représentations p-adiques et équations différentielles. Invent. Math. 148(2), 219–284 (2002)
Berger, L.: An introduction to the theory of p-adic representations. In: Geometric Aspects of Dwork Theory, vol. I, II, pp. 255–292. Walter de Gruyter GmbH & Co. KG, Berlin (2004)
Böckle G.: On the density of modular points in universal deformation spaces. Am. J. Math. 123(5), 985–1007 (2001)
Buzzard, K.: Eigenvarieties. In: L-Functions and Galois Representations, vol. 320 of London Mathematical Society. Lecture Note Series, pp. 59–120. Cambridge University Press, Cambridge (2007)
Carayol H.: Sur les représentations l-adiques associées aux formes modulaires de Hilbert. Ann. Sci. École Norm. Sup. (4) 19(3), 409–468 (1986)
Chenevier G.: Quelques courbes de Hecke se plongent dans l’espace de Colmez. J. Number Theory 128(8), 2430–2449 (2008)
Coleman, R. and Mazur, B.: The eigencurve. In Galois representations in arithmetic algebraic geometry (Durham, 1996), vol. 254 of London Mathematical Society. Lecture Note Series, pp. 1–113. Cambridge University Press, Cambridge (1998)
Colmez, P.: Serie principale unitaire pour gl2 (qp) et representations triangulines de di- mension 2. Preprint
Colmez, P.: Représentations triangulines de dimension 2. Astérisque, 319, 213–258 (2008). Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et \({(\phi,\Gamma)}\)-modules
de Jong A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math. 82(1995), 5–96 (1996)
Emerton, M.: Local-global compatibility in the p-adic langlands programme for gl2/q. Preprint
Gee, T.: Automorphic lifts of prescribed type. Arxiv Preprint (2008)
Kedlaya K.S.: A p-adic local monodromy theorem. Ann. Math. (2) 160(1), 93–184 (2004)
Kisin M.: Overconvergent modular forms and the Fontaine-Mazur conjecture. Invent. Math. 153(2), 373–454 (2003)
Kisin, M.: Modularity of 2-dimensional Galois representations. In: Current Developments in Mathematics, 2005, pp. 191–230. International Press, Somerville, MA (2007)
Kisin M.: Moduli of finite flat group schemes and modularity. Ann. Math. 170(3), 1085–1180 (2009)
Kisin M.: Potentially semi-stable deformation rings. J. Am. Math. Soc. 21(2), 513–546 (2008)
Kisin M.: The Fontaine–Mazur conjecture for GL2. J. Am. Math. Soc. 22(3), 641–690 (2009)
Mazur, B.: An introduction to the deformation theory of Galois representations. In: Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), pp. 243–311. Springer, New York (1997)
Newton, J.: Geometric level raising for p-adic automorphic forms. Arxiv Preprint (2009)
Paulin, A.: Local to global compatibility on the eigencurve. Axiv Preprint (2008)
Saito T.: Modular forms and p-adic Hodge theory. Invent. Math. 129(3), 607–620 (1997)
Serre J.-P., Tate J.: Good reduction of abelian varieties. Ann. Math. (2) 88, 492–517 (1968)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Paulin, A.G.M. Geometric level raising and lowering on the eigencurve. manuscripta math. 137, 129–157 (2012). https://doi.org/10.1007/s00229-011-0461-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00229-011-0461-x