Skip to main content
Log in

Geometric level raising and lowering on the eigencurve

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

If π f is a cuspidal automorphic representation of \({GL_{2/\mathbb{Q}}}\) associated to a modular form f, the local and global Langlands correspondences are compatible at all finite places of \({\mathbb{Q}}\). On the p-adic Coleman–Mazur eigencurve this principle can fail (away from p) under one of two conditions: on a generically principal series component where monodromy vanishes; or on a generically special component where the ratio of the Satake parameters degenerates. We prove, under mild restrictive hypotheses, that such points are the intersection of generically principal series and special components. This is a geometric analogue of Ribet’s level raising and lowering theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellaïche, J. and Chenevier, G.: Families of Galois Representations and Selmer Groups. Asterisque 324 (2009)

  2. Berger L.: Représentations p-adiques et équations différentielles. Invent. Math. 148(2), 219–284 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berger, L.: An introduction to the theory of p-adic representations. In: Geometric Aspects of Dwork Theory, vol. I, II, pp. 255–292. Walter de Gruyter GmbH & Co. KG, Berlin (2004)

  4. Böckle G.: On the density of modular points in universal deformation spaces. Am. J. Math. 123(5), 985–1007 (2001)

    Article  MATH  Google Scholar 

  5. Buzzard, K.: Eigenvarieties. In: L-Functions and Galois Representations, vol. 320 of London Mathematical Society. Lecture Note Series, pp. 59–120. Cambridge University Press, Cambridge (2007)

  6. Carayol H.: Sur les représentations l-adiques associées aux formes modulaires de Hilbert. Ann. Sci. École Norm. Sup. (4) 19(3), 409–468 (1986)

    MATH  MathSciNet  Google Scholar 

  7. Chenevier G.: Quelques courbes de Hecke se plongent dans l’espace de Colmez. J. Number Theory 128(8), 2430–2449 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coleman, R. and Mazur, B.: The eigencurve. In Galois representations in arithmetic algebraic geometry (Durham, 1996), vol. 254 of London Mathematical Society. Lecture Note Series, pp. 1–113. Cambridge University Press, Cambridge (1998)

  9. Colmez, P.: Serie principale unitaire pour gl2 (qp) et representations triangulines de di- mension 2. Preprint

  10. Colmez, P.: Représentations triangulines de dimension 2. Astérisque, 319, 213–258 (2008). Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et \({(\phi,\Gamma)}\)-modules

  11. de Jong A.J.: Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math. 82(1995), 5–96 (1996)

    Google Scholar 

  12. Emerton, M.: Local-global compatibility in the p-adic langlands programme for gl2/q. Preprint

  13. Gee, T.: Automorphic lifts of prescribed type. Arxiv Preprint (2008)

  14. Kedlaya K.S.: A p-adic local monodromy theorem. Ann. Math. (2) 160(1), 93–184 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kisin M.: Overconvergent modular forms and the Fontaine-Mazur conjecture. Invent. Math. 153(2), 373–454 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kisin, M.: Modularity of 2-dimensional Galois representations. In: Current Developments in Mathematics, 2005, pp. 191–230. International Press, Somerville, MA (2007)

  17. Kisin M.: Moduli of finite flat group schemes and modularity. Ann. Math. 170(3), 1085–1180 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kisin M.: Potentially semi-stable deformation rings. J. Am. Math. Soc. 21(2), 513–546 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kisin M.: The Fontaine–Mazur conjecture for GL2. J. Am. Math. Soc. 22(3), 641–690 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mazur, B.: An introduction to the deformation theory of Galois representations. In: Modular Forms and Fermat’s Last Theorem (Boston, MA, 1995), pp. 243–311. Springer, New York (1997)

  21. Newton, J.: Geometric level raising for p-adic automorphic forms. Arxiv Preprint (2009)

  22. Paulin, A.: Local to global compatibility on the eigencurve. Axiv Preprint (2008)

  23. Saito T.: Modular forms and p-adic Hodge theory. Invent. Math. 129(3), 607–620 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Serre J.-P., Tate J.: Good reduction of abelian varieties. Ann. Math. (2) 88, 492–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G. M. Paulin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulin, A.G.M. Geometric level raising and lowering on the eigencurve. manuscripta math. 137, 129–157 (2012). https://doi.org/10.1007/s00229-011-0461-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0461-x

Mathematics Subject Classification (2000)

Navigation