Skip to main content
Log in

Explicit Green operators for quantum mechanical Hamiltonians. I. The hydrogen atom

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We study a new approach to determine the asymptotic behaviour of quantum many-particle systems near coalescence points of particles which interact via singular Coulomb potentials. This problem is of fundamental interest in electronic structure theory in order to establish accurate and efficient models for numerical simulations. Within our approach, coalescence points of particles are treated as embedded geometric singularities in the configuration space of electrons. Based on a general singular pseudo-differential calculus, we provide a recursive scheme for the calculation of the parametrix and corresponding Green operator of a nonrelativistic Hamiltonian. In our singular calculus, the Green operator encodes all the asymptotic information of the eigenfunctions. Explicit calculations and an asymptotic representation for the Green operator of the hydrogen atom and isoelectronic ions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bethe H.A., Salpeter E.E.: Quantum Mechanics of One-and Two-Electron Atoms. Dover, Mineola (2008)

    Google Scholar 

  2. Egorov Y.V., Schulze B.-W.: Pseudo-Differential Operators, Singularities, Applications. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  3. Flad H.-J., Hackbusch W., Schneider R.: Best N-term approximation in electronic structure calculations. I. One-electron reduced density matrix. ESAIM: M2AN 40, 49–61 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Flad H.-J., Hackbusch W., Schneider R.: Best N-term approximation in electronic structure calculation. II. Jastrow factors. ESAIM: M2AN 41, 261–279 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Flad H.-J., Schneider R., Schulze B.-W.: Regularity of solutions of Hartree-Fock equations with Coulomb potential. Math. Methods Appl. Sci. 31, 2172–2201 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fock V.A.: On the Schrödinger equation of the helium atom. In: Faddeev, L.D., Khalfin, L.A., Komarov, I.V. (eds) V.A. Fock—Selected Works: Quantum Mechanics and Quantum Field Theory, pp. 525–538. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  7. Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys. 255, 183–227 (2005)

    Article  MATH  Google Scholar 

  8. Fournais S., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Analytic structure of many-body Coulombic wave functions. Commun. Math. Phys. 289, 291–310 (2009)

    Article  MATH  Google Scholar 

  9. Gohberg I.C., Sigal E.I.: An operator generalization of the logarithmic residue theorem and the theorem of Rouché. Math. USSR Sb. 13, 603–625 (1971)

    Article  MATH  Google Scholar 

  10. Harutyunyan, G., Schulze B.-W.: Elliptic Mixed, Transmission and Singular Crack Problems. EMS Tracts in Mathematics vol. 4, European Mathematical Society, Zürich (2008)

  11. Hoffmann-Ostenhof M., Seiler R.: Cusp conditions for eigenfunctions of n-electron systems. Phys. Rev. A 23, 21–23 (1981)

    Article  MathSciNet  Google Scholar 

  12. Hoffmann-Ostenhof M., Hoffmann-Ostenhof T.: Local properties of solutions of Schrödinger equations. Commun. Part. Diff. Eq. 17, 491–522 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Stremnitzer H.: Local properties of Coulombic wave functions. Commun. Math. Phys. 163, 185–215 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Østergaard Sørensen T.: Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2, 77–100 (2001)

    Article  Google Scholar 

  15. Hunsicker E., Nistor V., Sofo J.O.: Analysis of periodic Schrödinger operators: regularity and approximation of eigenfunctions. J. Math. Phys. 49, 083501–083521 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kato T.: On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957)

    Article  MATH  Google Scholar 

  17. Klopper W., Manby F.R., Ten-No S., Valeev E.F.: R12 methods in explicitly correlated molecular electronic structure theory. Int. Rev. Phys. Chem. 25, 427–468 (2006)

    Article  Google Scholar 

  18. Morgan J.D. III: Convergence properties of Fock’s expansion for S-state eigenfunctions of the helium atom. Theor. Chim. Acta 69, 181–223 (1986)

    Article  Google Scholar 

  19. Schulze B.-W.: Boundary Value Problems and Singular Pseudo-Differential Operators. Wiley, New York (1998)

    MATH  Google Scholar 

  20. Triebel H.: Higher Analysis. Barth, Leipzig (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Jürgen Flad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flad, HJ., Harutyunyan, G., Schneider, R. et al. Explicit Green operators for quantum mechanical Hamiltonians. I. The hydrogen atom. manuscripta math. 135, 497–519 (2011). https://doi.org/10.1007/s00229-011-0429-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0429-x

Mathematics Subject Classification (2010)

Navigation