Skip to main content
Log in

On division algebras having the same maximal subfields

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We show that if a field K of characteristic ≠ 2 satisfies the following property (*) for any two central quaternion division algebras D 1 and D 2 over K, the fact that D 1 and D 2 have the same maximal subfields implies that D 1D 2 over K, then the field of rational functions K(x) also satisfies (*). This, in particular, provides an alternative proof for the result of S. Garibaldi and D. Saltman that the fields of rational functions k(x 1, . . . , x r ), where k is a number field, satisfy (*). We also show that K = k(x 1, . . . , x r ), where k is either a totally complex number field with a single dyadic place (e.g. \({k = \mathbb{Q}(\sqrt{-1})}\)) or a finite field of characteristic ≠ 2, satisfies the analog of (*) for all central division algebras having exponent two in the Brauer group Br(K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cassels, J.W.S., Fröhlich, A. (eds): Algebraic Number Theory. Academic Press, London (1967)

    MATH  Google Scholar 

  2. Garibaldi, S., Merkurjev, A., Serre, J.-P.: In: Cohomological Invariants in Galois Cohomology. University Lecture Series, vol. 28. AMS (2003)

  3. Garibaldi, S., Saltman, D.J.: Quaternion algebras with the same subfields. In: Quadratic Forms, Linear Algebraic Groups, and Cohomology, pp. 221–234. Springer, NY (2010)

  4. Gille P., Szamuely T.: Central Simple Algebras and Galois Cohomology. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  5. Krashen, D., McKinnie, K.: Distinguishing division algebras by finite splitting fields. arXiv:1001.3685

  6. Neukirch J., Schmidt A., Wingberg K.: Cohomology of Number Fields. Springer, NY (2000)

    MATH  Google Scholar 

  7. Pierce R.S.: Associative Algebras, GTM 88. Springer, Berlin (1982)

    Google Scholar 

  8. Pop, F.: Henselian implies large. preprint

  9. Prasad G., Rapinchuk A.S.: Irreducible tori in semisimple groups. Int. Math. Res. Notices 23, 1229–1242 (2001)

    Article  MathSciNet  Google Scholar 

  10. Prasad G., Rapinchuk A.S.: Existence of irreducible \({\mathbb{R}}\) -regular elements in Zariski-dense subgroups. Math. Res. Lett. 10, 21–32 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Prasad G., Rapinchuk A.S.: Weakly commensurable arithmetic groups and isospectral locally symmetric spaces. Publ. Math. IHES 109, 113–184 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Reid A.W.: Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds. Duke Math. J. 65, 215–228 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rowen, L.H., Sivatski, A.S., Tignol, J.-P.: Division algebras over rational function fields in one variable. In: Algebra and Number Theory, pp. 158–180. Hindustan Book Agency, Delhi (2005). Preprint No. 137, http://mathematik.uni-bielefeld.de/LAG

  14. Schilling, O.F.G.: The Theory of Valuations. AMS (1950)

  15. Serre J.-P.: Local Fields, GTM 67. Springer, NY (1979)

    Google Scholar 

  16. Serre J.-P.: Galois Cohomology. Springer, NY (1997)

    MATH  Google Scholar 

  17. Wadsworth, A.R.: Valuation theory on finite dimensional division algebras. In: Valuation Theory and Its applications, vol. I. Saskatoon, SK, (1999), Fields Inst Commun, vol. 32, pp. 385–449. Amer Math Soc., Providence, RI, (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Rapinchuk.

Additional information

To Gopal Prasad on his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapinchuk, A.S., Rapinchuk, I.A. On division algebras having the same maximal subfields. manuscripta math. 132, 273–293 (2010). https://doi.org/10.1007/s00229-010-0361-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-010-0361-5

Mathematics Subject Classification (2000)

Navigation