Skip to main content
Log in

The f-invariant and index theory

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper we prove a tertiary index theorem which relates a spectral geometric and a homotopy theoretic invariant of an almost complex manifold with framed boundary. It is derived from the index theoretic and homotopy theoretic versions of a complex elliptic genus and interestingly related with the structure of the stable homotopy groups of spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams J.F.: On the groups J(X). IV. Topology 5, 21–71 (1966)

    Article  MathSciNet  Google Scholar 

  2. Atiyah M.F., Singer I.M.: The index of elliptic operators. I. Ann. of Math. (2) 87, 484–530 (1968)

    Article  MathSciNet  Google Scholar 

  3. Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. II. Math. Proc. Camb. Philos. Soc. 78(3), 405–432 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Behrens, M., Laures, G.: Beta-family congruences and the f-invariant. Geom. Topol. Monogr. http://front.math.ucdavis.edu/0809.1125 (to appear)

  5. Bunke, U.: Index theory, eta forms, and Deligne cohomology. Mem. Am. Math. Soc. 198(928), vi+120, (2009)

  6. Deninger C., Singhof W.: The e-invariant and the spectrum of the Laplacian for compact nilmanifolds covered by Heisenberg groups. Invent. Math. 78(1), 101–112 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Freed D.S., Melrose R.B.: A mod k index theorem. Invent. Math. 107(2), 283–299 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Franke J.: On the construction of elliptic cohomology. Math. Nachr. 158, 43–65 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goerss P., Henn H.-W., Mahowald M., Rezk C.: A resolution of the K(2)-local sphere at the prime 3. Ann. of Math. (2) 162(2), 777–822 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Higson N.: An approach to Z/k-index theory. Internat. J. Math. 1(2), 189–210 (1990)

    Article  MathSciNet  Google Scholar 

  11. Hill, A., Hopkins, M.J., Ravenel, D.C.: On the non-existence of elements of Kervaire invariant one (2009). http://arxiv.org/abs/0908.3724 (preprint)

  12. Hirzebruch, F., Berger, T., Jung, R.: Manifolds and modular forms. Aspects of Mathematics, vol. E20. Friedr. Vieweg & Sohn, Braunschweig, (with appendices by Nils-Peter Skoruppa and by Paul Baum) (1992)

  13. Laures G.: The topological q-expansion principle. Topology 38(2), 387–425 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Laures G.: On cobordism of manifolds with corners. Trans. Am. Math. Soc. 352(12), 5667–5688 (2000) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  15. Miller H., Ravenel D., Wilson S.: Periodic phenomena in the Adams-Novikov spectral sequence. Ann. Math. (2) 106(3), 469–516 (1977)

    Article  MathSciNet  Google Scholar 

  16. Ravenel, D.: Complex cobordism and stable homotopy groups of spheres. Pure and Applied Mathematics, vol. 121. Academic Press Inc., Orlando (1986)

  17. Shimura, G.: Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1 Publications of the Mathematical Society of Japan, vol. 11. Iwanami Shoten Publishers, Tokyo

  18. von Bodecker, H.: On the geometry of the f-invariant (2008), http://front.math.ucdavis.edu/0808.0428 (preprint)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Naumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunke, U., Naumann, N. The f-invariant and index theory. manuscripta math. 132, 365–397 (2010). https://doi.org/10.1007/s00229-010-0351-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-010-0351-7

Mathematics Subject Classification (2000)

Navigation