Skip to main content

Advertisement

Log in

Submodules of minimal Buchsbaum–Rim multiplicity and applications

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We give a characterization, in terms of an equality of integral closures, of a class of submodules having minimal Buchsbaum–Rim multiplicity with respect to a family of ideals. This is a notion motivated by an inequality of multiplicities. We apply our study to the computation of a known invariant in singularity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bivià-Ausina C.: The integral closure of modules, Buchsbaum–Rim multiplicities and Newton polyhedra. J. London Math. Soc. 69(2), 407–427 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bivià-Ausina C.: Mixed Newton numbers and isolated complete intersection singularities. Proc. London Math. Soc. 94(3), 749–771 (2007)

    Article  MATH  Google Scholar 

  3. Bivià-Ausina, C.: Local Łojasiewicz exponents, Milnor numbers and mixed multiplicities of ideals (to appear in Math. Z.)

  4. Buchsbaum D.A., Rim D.S.: A generalized Koszul complex II. Depth and multiplicity. Trans. Am. Math. Soc. 111, 197–224 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  5. Corso A., Huneke C., Vasconcelos W.: On the integral closure of ideals. Manuscripta Math. 95, 331–347 (1998)

    MATH  MathSciNet  Google Scholar 

  6. Ebeling W., Gusein-Zade S.M.: Indices of 1-forms on an isolated complete intersection singularity. Mosc. Math. J. 3(2), 439–455 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. In: Graduate Texts in Mathematics, vol. 150, Springer-Verlag (2004)

  8. Esterov A.I.: Indices of 1-forms and Newton polyhedra. Rev. Mat. Complut. 18(1), 233–242 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Gaffney T.: Integral closure of modules and Whitney equisingularity. Invent. Math. 107, 301–322 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gaffney T.: Multiplicities and equisingularity of ICIS germs. Invent. Math. 123, 209–220 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Herrmann M., Ikeda S., Orbanz U.: Equimultiplicity and Blowing Up. Springer-Verlag, Berlin (1988)

    MATH  Google Scholar 

  12. Huneke, C., Swanson, I.: In: Integral closure of ideals, rings, and modules, London Math. Soc. Lecture Note Series 336, Cambridge University Press (2006)

  13. Katz D.: Reduction criteria for modules. Comm. Algebra 23(12), 4543–4548 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kirby D., Rees D.: Multiplicities in graded rings II: integral equivalence and the Buchsbaum–Rim multiplicity. Math. Proc. Cambridge Philos. Soc. 119(3), 425–445 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kleiman S., Thorup A.: Mixed Buchsbaum–Rim multiplicities. Amer. J. Math. 118(3), 529–569 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lejeune, M., Teissier, B.: Clôture intégrale des idéaux et equisingularité. Centre de Mathématiques, Université Scientifique et Medicale de Grenoble (1974). Also available at the ArXiv preprint math.CV/0803.2369, 2008

  17. Northcott D.G., Rees D.: Reductions of ideals in local rings. Proc. Cambridge Philos. Soc. 50, 145–158 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  18. Oka M.: Principal zeta-function of non-degenerate complete intersection singularity. J. Fac. Sci. Univ. Tokyo 37, 11–32 (1990)

    MATH  MathSciNet  Google Scholar 

  19. Oka M.: Non-degenerate complete intersection singularity. In: Actualités Mathématiques. Hermann, Paris (1997)

    Google Scholar 

  20. Rees D.: \({\mathfrak a}\) -transforms of local rings and a theorem on multiplicities of ideals. Proc. Cambridge Philos. Soc. 57, 8–17 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rees D.: Generalizations of reductions and mixed multiplicities. London Math. Soc. 29(2), 397–414 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rees D.: Reduction of modules. Math. Proc. Cambridge Philos. Soc. 101, 431–440 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Swanson I.: Mixed multiplicities, joint reductions and quasi-unmixed local rings. J. London Math. Soc. (2) 48(1), 1–14 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Teissier, B.: Cycles évanescents, sections planes et conditions of Whitney. Singularités à Cargèse, Astérisque 7–8, 285–362 (1973)

  25. Teissier, B.: Monômes, volumes et multiplicités. In: Introduction à la théorie des singularités, II. In: Travaux en Cours, vol. 37, pp. 127–141. Hermann (1988)

  26. Teissier, B.: Variétés Polaires II. Multiplicites polaires, sections planes et conditions de Whitney. In: Algebraic geometry (La Rd́fbida, 1981). Lecture Notes in Math. 961, pp. 314–491. Springer, Berlin (1982)

  27. Vasconcelos, W.: Integral closure. Rees algebras, multiplicities, algorithms. Springer Monogr. Math. (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Bivià-Ausina.

Additional information

Work supported by DGICYT Grant MTM2006–06027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bivià-Ausina, C. Submodules of minimal Buchsbaum–Rim multiplicity and applications. manuscripta math. 129, 525–544 (2009). https://doi.org/10.1007/s00229-009-0266-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-009-0266-3

Mathematics Subject Classification (2000)

Navigation