Skip to main content
Log in

Finite determinacy and Whitney equisingularity of map germs from \({\mathbb{C}^n}\) to \({\mathbb{C}^{2n-1}}\)

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We show that a holomorphic map germ \({f : (\mathbb{C}^n,0)\to(\mathbb{C}^{2n-1},0)}\) is finitely determined if and only if the double point scheme D(f) is a reduced curve. If n ≥ 3, we have that μ(D 2(f)) = 2μ(D 2(f)/S 2)+C(f)−1, where D 2(f) is the lifting of the double point curve in \({(\mathbb{C}^n\times \mathbb{C}^n,0)}\)μ(X) denotes the Milnor number of X and C(f) is the number of cross-caps that appear in a stable deformation of f. Moreover, we consider an unfolding F(t, x) = (t, f t (x)) of f and show that if F is μ-constant, then it is excellent in the sense of Gaffney. Finally, we find a minimal set of invariants whose constancy in the family f t is equivalent to the Whitney equisingularity of F. We also give an example of an unfolding which is topologically trivial, but it is not Whitney equisingular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedregal, R., Houston, K., Ruas, M.A.S.: Topological triviality of families of singular surfaces, preprint, arXiv:math/0611699v1 [math.CV]

  2. Brieskorn, E., Greuel, G.M.: Singularities of complete intersections. Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), pp. 123–129. University Tokyo Press, Tokyo (1975)

  3. Brücker C., Greuel G.M.: Deformationen isolierter Kurvensingularitäten mit eingebetteten Komponenten. Manuscripta Math. 70(1), 93–114 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buchsbaum D.A., Eisenbud D.: Generic free resolutions and a family of generically perfect ideals. Adv. Math. 18(3), 245–301 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Buchweitz R.O., Greuel G.M.: The Milnor number and deformations of complex curve singularities. Invent. Math. 58(3), 241–281 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Damon J.: Topological triviality and versality for subgroups of \({{\mathcal A}}\) and \({{\mathcal K}}\) . II. Sufficient conditions and applications. Nonlinearity 5(2), 373–412 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fernández de Bobadilla, J., Pe Pereira, M.: Equisingularity at the normalization, preprint, arXiv:math/0612201v1 [math.AG]

  8. Gaffney T.: Polar multiplicities and equisingularity of map germs. Topology 32(1), 185–223 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gaffney T., Vohra R.: A numerical characterization of equisingularity for map germs from n-space, (n≥ 3), to the plane. J. Dyn. Syst. Geom. Theor. 2, 43–55 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Jorge Pérez V.H.: Polar multiplicities and equisingularity of map germs from \({{\mathbb C}^3}\) to \({{\mathbb C}^3}\) . Houston J. Math. 29(4), 901–924 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Jorge Pérez V.H., Levcovitz D., Saia M.J.: Invariants, equisingularity and Euler obstruction of map germs from \({\mathbb C^n}\) to \({\mathbb C^n}\) . J. Reine Angew. Math. 587, 145–167 (2005)

    MATH  MathSciNet  Google Scholar 

  12. Jorge Pérez V.H., Saia M.J.: Euler obstruction, polar multiplicities and equisingularity of map germs from in \({\mathcal O(n, p)}\) , n < p. Int. J. Math. 17(8), 887–903 (2006)

    Article  MATH  Google Scholar 

  13. Lê D.T.: Computation of the Milnor number of an isolated singularity of a complete intersection. Funkcional. Anal. i Priložen. 8(2), 45–49 (1974)

    Google Scholar 

  14. Matsumura H.: Commutative ring theory. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  15. Marar W.L., Mond D.: Multiple point schemes for corank 1 maps. J. Lond. Math. Soc. (2) 39(3), 553–567 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mond D.: Some remarks on the geometry and classification of germs of map from surfaces to 3-space. Topology 26(3), 361–383 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mond D., van Straten D.: Milnor number equals Tjurina number for functions on space curves. J. Lond. Math. Soc. (2) 63(1), 177–187 (2001)

    Article  MATH  Google Scholar 

  18. Nuño Ballesteros J.J., Saia M.J.: Multiplicity of Boardman strata and deformations of map germs. Glasgow Math. J. 40(1), 21–32 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nuño Ballesteros J.J., Tomazella J.N.: The Milnor number of a function on a space curve germ. Bull. Lond. Math. Soc. 40(1), 129–138 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tessier, B.: Variétés Polaires 2: Multiplicités Polaires, Sections Planes, et Conditions de Whitney, Algebraic Geometry. In: Proc. Int. Conf. La Rábida/Spain 1981. Sringer Lecture Notes, vol. 961, pp. 314–491. Springer, Berlin (1982)

  21. Teissier B.: Variétés polaires. I: Invariants polaires des singularites d’hypersurfaces. Invent. Math. 40, 267–292 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wall C.T.C.: Finite determinacy of smooth map-germs. Bull. Lond. Math. Soc. 13(6), 481–539 (1981)

    Article  MATH  Google Scholar 

  23. Whitney H.: The singularities of a smooth n-manifold in (2n − 1)-space. Ann. Math. (2) 45, 247–293 (1944)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Nuño-Ballesteros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jorge Pérez, V.H., Nuño-Ballesteros, J.J. Finite determinacy and Whitney equisingularity of map germs from \({\mathbb{C}^n}\) to \({\mathbb{C}^{2n-1}}\) . manuscripta math. 128, 389–410 (2009). https://doi.org/10.1007/s00229-008-0240-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0240-5

Mathematics Subject Classification (2000)

Navigation