Skip to main content
Log in

Abelian constraints in inverse Galois theory

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We show that if a finite group G is the Galois group of a Galois cover of \({\mathbb{P}^1}\) over \({\mathbb{Q}}\) , then the orders p n of the abelianization of its p-Sylow subgroups are bounded in terms of their index m, of the branch point number r and the smallest prime \({\ell \hskip -2pt \not | \hskip 2pt |{G}|}\) of good reduction of the branch divisor. This is a new constraint for the regular inverse Galois problem: if p n is suitably large compared to r and m, the branch points must coalesce modulo small primes. We further conjecture that p n should be bounded only in terms of r and m. We use a connection with some rationality question on the torsion of abelian varieties. For example, our conjecture follows from the so-called torsion conjectures. Our approach also provides a new viewpoint on Fried’s Modular Tower program and a weak form of its main conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, P., Fried, M.D.: Hurwitz monodromy, spin separation and higher levels of a modular tower. In: Arithmetic fundamental groups and noncommutative algebra (Berkeley, 1999). Proc. Sympos. Pure Math., vol. 70, pp. 79–220. American Mathematical Society, Providence, RI (2002)

  2. Bosch, S., Lutkebohmert, W., Raynaud, M.: Neron models, vol. 21. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1990)

  3. Bertin, J., Romagny, M.: Champs de Hurwitz (2006, preprint)

  4. Cadoret, A.: Théorie de Galois inverse et arithmétique des espaces de Hurwitz. Thèse de doctorat, Université Lille 1, 2004

  5. Cadoret, A.: Lifting results for rational points on Hurwitz moduli spaces. Isr. J. Math., 164, 2008

  6. Cadoret, A.: On the profinite regular inverse Galois problem. Publ. R.I.M.S., 44, (2008)

  7. Cadoret, A., Tamagawa, A.: Stratification of Hurwitz spaces by closed modular subvarieties. Pure Appl. Math. Q (2008, to appear)

  8. Cadoret, A., Tamagawa, A.: Strong uniform boundedness results for abelian schemes (2008, preprint)

  9. Cadoret, A., Tamagawa, A.: Uniform boundedness of p-primary torsion on abelian schemes (2008, preprint)

  10. Clark P.L., Xarles X. (2008) Local bounds for torsion points on abelian varieties. Canadian J. Math. 60: 532–555

    MATH  MathSciNet  Google Scholar 

  11. Dèbes P., Deschamps B. (2004) Corps \({{\psi}}\) -libres et théorie inverse de Galois infinie. J. Reine Angew. Math. 574: 197–218

    MATH  MathSciNet  Google Scholar 

  12. Dèbes, P.: Théorème d’existence de Riemann. In: Arithmétique des revêtements algébriques. Séminaires et Congrès, vol. 5, pp. 27–41. SMF, 2001

  13. Dèbes, P.: An introduction to the modular tower program. In: Groupes de Galois arithmétiques et différentiels. Séminaires et Congrès, vol. 13, pp. 127–144. SMF, 2006

  14. Dèbes P., Fried M.D. (1994) Nonrigid constructions in Galois theory. Pacific J. Math. 163(1): 81–122

    MATH  MathSciNet  Google Scholar 

  15. Dèbes P., Harbater D. (1998) Fields of definition of p-adic covers. J. Reine Angew. Math. 498: 223–236

    MATH  MathSciNet  Google Scholar 

  16. Faltings G. (1983) Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73: 349–366

    Article  MATH  MathSciNet  Google Scholar 

  17. Fried, M.D., Jarden, M.: Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin, 2004. (first edition 1986)

  18. Fried, M.D.: Introduction to modular towers: generalizing dihedral group–modular curve connections. In: Recent developments in the inverse Galois problem (Seattle, WA, 1993). Contemp. Math., vol. 186, pp. 111–171. Amer. Math. Soc., Providence, RI (1995)

  19. Fried, M.D.: The main conjecture of modular towers and its higher rank generalization. In: Groupes de Galois arithmétiques et différentiels. Séminaires et Congrès, vol. 13, pp. 165–233. SMF, 2006

  20. Fulton W. (1969) Hurwitz schemes and irreducibility of moduli of algebraic curves. Ann. Math. 90: 542–575

    Article  MathSciNet  Google Scholar 

  21. Kimura, K.: Modular towers for finite groups that may not be centerfree. Master Thesis, RIMS (2005)

  22. Milne, J.S.: Jacobian varieties. In: Arithmetic Geometry, pp. 167–212. Springer, New York (1986)

  23. Raynaud, M.: p-groupes et réduction semi-stable des courbes. In The Grothendieck Festschrift. Modern Birkhäuser Classics, vol. III, pp. 179–197. SMF, 1990

  24. Ribes, L., Zalesskii, P.: Profinite Groups, vol. 40. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (2000)

  25. Serre J.-P. (1959) Groupes algébriques et corps de classes. Hermann, Paris

    MATH  Google Scholar 

  26. Tate J. (1966) Endomorphisms of abelian varieties over finite fields. Invent. Math. 2: 134–144

    Article  MATH  MathSciNet  Google Scholar 

  27. Völklein H. (1996) Groups as Galois Groups, vol. 53. Cambridge Studies in Advanced Mathematics. Cambridge University Press, London

    Google Scholar 

  28. Wewers, S.: Construction of Hurwitz spaces. PhD Thesis, Essen (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Dèbes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadoret, A., Dèbes, P. Abelian constraints in inverse Galois theory. manuscripta math. 128, 329–341 (2009). https://doi.org/10.1007/s00229-008-0236-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0236-1

Mathematics Subject Classification (2000)

Navigation