Skip to main content
Log in

Der relative Satz von Schanuel

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Résumé

In dieser Arbeit zählen wir in einem projektiven linearen Unteraum L von \({\mathbb{p}_K^N}\) die Punkte mit Koordinaten in einem gegebenen Zahlkörper K und mit Arakelov Höhe beschränkt durch T ≥ 1. Dies verallgemeinert den bekannten Satz von Schanuel, der den Fall \({L = \mathbb{p}_K^N}\) behandelt. Wir legen besonderen Wert darauf, dass in unserer Formel die Abhängigkeit von L zum Ausdruck kommt und dass sie für alle T ≥ 1 gilt.

Abstract

In this paper we count the number of linear subspaces L of \({\mathbb{p}_K^N}\) defined over the number field K and with Arakelov height bounded by T. This generalizes the well-known Theorem of Schanuel which handles the case \({L=\mathbb{p}_K^N}\) . We emphasize the dependence on L in our formula which holds for all T ≥ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Bombieri, E., Gubler, W.: Heights in Diophantine Geometry, New Mathematical Monographs 4. Cambridge University Press, Cambridge (2006), xvi+652 S

  2. Gaudron, É.: Pentes des fibrés vectoriels adéliques sur un corps global. arXiv:math/ 0605408, pp. 1–47

  3. Koch, H.: Zahlentheorie, Algebraische Zahlen und Funktionen. Friedr. Vieweg & Sohn, Braunschweig (1997), xii+344 S

  4. Landau, E.: Einführung in die elementare und analytische Theorie der algebraischen Zahlen und Ideale, 2. Auflage; B. G. Teubner, Leibzig (1927), vii+147 S

  5. Lang, S.: Algebraic Number Theory, Addison-Wesley Series in Mathematics. Addison-Wesley, Reading (1970), xi+354 S

  6. Lang, S.: Fundamentals of Diophantine Geometry. Springer, New York (1983), xviii+ 370 S

  7. Lang, S.: Number theory III, Diophantine Geometry. Encyclopaedia of Mathematical Sciences, vol. 60. Springer, Berlin (1991), xiv+296 S

  8. Lekkerkerker, C.G.: Geometry of Numbers. Bibliotheca Mathematica Vol. VIII; Wolters-Noordhoff Publishing, Groningen; North-Holland, Amsterdam (1969), ix+510 S

  9. Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers, 2nd edn. Substantially revised and extended. Springer, Berlin (1990); PWN-Polish Scientific Publishers, Warszawa 1990, xiii+746 S

  10. Peyre, E.: Points de haunteur bornée, topologie adélique er mesures de Tamagawa, 22nd Journées Arithmétiques (Lille 2001). J. Théor. Nombres Bordeaux 15(1), 319–349 (2003)

    MATH  MathSciNet  Google Scholar 

  11. Schanuel, S.: Heights in number fields. Bull. Soc. Math. France 107(4), 433–449 (1979)

    MATH  MathSciNet  Google Scholar 

  12. Schmidt, W.M.: On heights of algebraic subspaces and diophantine approximations. Ann. Math. 85(2), 430–472 (1967)

    Article  Google Scholar 

  13. Thunder, J.L.: An adelic Minkowski-Hlawka Theorem and an application to Siegel’s Lemma. J. Reine Angew. Math. 475, 167–185 (1996)

    MATH  MathSciNet  Google Scholar 

  14. Thunder, J.L.: An asymptotic estimate for heights of algebraic subspaces. Trans. Am. Math. Soc. 331(1), 395–424 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Thunder, J.L.: Asymptotic estimates for rational points of bounded height on flag varieties. Compositio Math. 88(2), 155–186 (1993)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Christensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, C., Gubler, W. Der relative Satz von Schanuel. manuscripta math. 126, 505–525 (2008). https://doi.org/10.1007/s00229-008-0186-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0186-7

Mathematics Subject Classification (2000)

Navigation