Skip to main content
Log in

Tautness for riemannian foliations on non-compact manifolds

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

For a riemannian foliation \({\mathcal{F}}\) on a closed manifold M, it is known that \({\mathcal{F}}\) is taut (i.e. the leaves are minimal submanifolds) if and only if the (tautness) class defined by the mean curvature form \(\kappa_\mu\) (relatively to a suitable riemannian metric μ) is zero (cf. Álvarez in Ann Global Anal Geom 10:179–194, 1992). In the transversally orientable case, tautness is equivalent to the non-vanishing of the top basic cohomology group \(H^{n}\,(M\,/\,{\mathcal{F}})\) , where \(n = {\rm codim}\,{\mathcal{F}}\) (cf. Masa in Comment Math Helv 67:17–27, 1992). By the Poincaré Duality (cf. Kamber et and Tondeur in Astérisque 18:458–471, 1984) this last condition is equivalent to the non-vanishing of the basic twisted cohomology group \(H^{0}_{\kappa_\mu}(M\,/\,{\mathcal{F}})\) , when M is oriented. When M is not compact, the tautness class is not even defined in general. In this work, we recover the previous study and results for a particular case of riemannian foliations on non compact manifolds: the regular part of a singular riemannian foliation on a compact manifold (CERF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez J.A. (1992). The basic component of the mean curvature form for a riemannian foliation. Ann. Global Anal. Geom. 10: 179–194

    Article  MathSciNet  MATH  Google Scholar 

  2. Boualem H. and Molino P. (1993). Modèles locaux saturés de feuilletages riemanniens singuliers. C. R. Acad. Sci. Paris 316: 913–916

    MathSciNet  MATH  Google Scholar 

  3. Carrière Y. (1984). Flots riemanniens. Astérisque 116: 31–52

    Google Scholar 

  4. Cairns G. and Escobales R. (1997). Further geometry of the mean curvature one-form and the normal plane field one-form on a foliated riemannian manifold. J. Aust. Math. Soc. 62: 46–63

    MathSciNet  MATH  Google Scholar 

  5. Domínguez D. (1998). Finiteness and tenseness theorems for riemannian foliations. Am. J. Math. 120: 1237–1276

    Article  MATH  Google Scholar 

  6. Edwars R., Millet K. and Sullivan D. (1977). Foliations with all leaves compact. Topology 16: 13–32

    Article  MathSciNet  Google Scholar 

  7. Haefliger A. (1980). Some remarks on foliations with minimal leaves. J. Diff. Geom. 15: 269–284

    MathSciNet  MATH  Google Scholar 

  8. Kamber et F.W. and Tondeur Ph. (1982). Harmonic foliations. Springer LN Math. 949: 87–121

    Google Scholar 

  9. Kamber et F.W. and Tondeur Ph. (1984). Duality theorems for foliations. Astérisque 18: 458–471

    Google Scholar 

  10. Masa X. (1992). Duality and minimality in riemannian foliations. Comment. Math. Helv. 67: 17–27

    Article  MathSciNet  MATH  Google Scholar 

  11. Mather J. (1970). Notes on topological stability. Harvard University Press, Cambridge

    Google Scholar 

  12. Miguel V. and Wolak R. (2006). Minimal singular riemannian foliations. C.R.A.S. 342: 33–36

    Google Scholar 

  13. Molino P. (1988). Feuilletages riemanniens réguliers et singuliers. Colloque Géométrie et Physique, Paris 1986. Travaux en cours 33: 173–201

    MathSciNet  Google Scholar 

  14. Molino, P.: Riemannian foliations. Prog. Math., vol. 73. Birkhäuser, Basel (1988)

  15. Rummler H. (1979). Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts. Comment. Math. Helv. 54: 224–239

    Article  MathSciNet  MATH  Google Scholar 

  16. Saralegi-Aranguren M. and Wolak R. (2005). The BIC of a conical fibration. Math. Notes 77: 213–231

    Article  MathSciNet  MATH  Google Scholar 

  17. Saralegi-Aranguren M. and Wolak R. (2006). The BIC of a defined by an abelian group of isometries. Ann. Polon. Math. 89: 203–246

    Article  MathSciNet  MATH  Google Scholar 

  18. Sergiescu, V.: Basic cohomology and tautness of riemannian foliations. Appendix B in [14]

  19. Stefan P. (1974). Accesible sets, orbits and foliations with singularities. Proc. Lond. Math. Soc. 29: 699–713

    Article  MathSciNet  MATH  Google Scholar 

  20. Sullivan D. (1979). A homological characterization of foliations consisting of minimal surfaces. Comment. Math. Helv. 54: 218–223

    Article  MathSciNet  MATH  Google Scholar 

  21. Sussmann H.J. (1973). Orbit of families of vector fields and integrability of distributions. Trans. Am. Math. J. 180: 171–188

    Article  MathSciNet  MATH  Google Scholar 

  22. Thom R. (1969). Ensembles et morphismes stratifiés. Bull. Am. Math. Soc. 75: 240–284

    Article  MathSciNet  MATH  Google Scholar 

  23. Tondeur, Ph.: Geometry of foliations. Mon. Math., vol. 90. Birkhäuser, Basel (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ignacio Royo Prieto.

Additional information

J. I. Royo Prieto was partially supported by EHU06/05, by a PostGrant from the Basque Government and by the MCyT of the Spanish Government. R. Wolak was partially supported by the KBN grant 2PO3A 021 25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royo Prieto, J.I., Saralegi-Aranguren, M. & Wolak, R. Tautness for riemannian foliations on non-compact manifolds. manuscripta math. 126, 177–200 (2008). https://doi.org/10.1007/s00229-008-0172-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-008-0172-0

Mathematics Subject Classification (2000)

Navigation