Skip to main content
Log in

Moving subvarieties by endomorphisms

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let K be an algebraically closed field of characteristic zero and let A be a semiabelian variety defined over K. Let End(A) be the ring of endomorphisms of A. Let XA be a subvariety of smaller dimension. We show that \(\bigcup_{f\in{\rm End}(A)} f(X(K))\) does not equal A(K). In particular, we may take K to be countable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertrand, D.: Endomorphimses des groups algébriques; Applications Arithmétiques. Diophantine approximations and transcendental numbers (Luminy, 1982), Progr. Math., 31, pp 1–45. Birkhäuser, Boston (1983)

  2. Bogomolov F. and Tschinkel Y. (2005). Curves in abelian varieties over finite fields. Int. Math. Res. Not. 4: 233–238

    Article  MathSciNet  Google Scholar 

  3. Faltings G. (1991). Diophantine approximation on abelian varieties. Ann. Math. 133: 549–576

    Article  MathSciNet  Google Scholar 

  4. Faltings G. (1994). The general case of Lang’s conjecture. In: Barsotti (eds) Symposium in Algebraic Geometry, pp 175–182. Academic, New York

    Google Scholar 

  5. Hindry M. (1988). Autour d’une conjecure de Serge Lang. Invent. Math. 94: 575–603

    Article  MATH  MathSciNet  Google Scholar 

  6. Humphreys J.E. (1975). Linear Algebraic Groups. Springer, Heidelberg

    MATH  Google Scholar 

  7. Kolchin E.R. (1968). Algebraic groups and algebraic dependence. Am. J. Math. 90: 1151–1164

    Article  MATH  MathSciNet  Google Scholar 

  8. Lang, S.: Integral points on curves. Publ. I.H.E.S. Math, Paris (1960)

  9. Lang S. (1983). Fundamentals of Diophantine Geometry. Springer, Heidelberg

    MATH  Google Scholar 

  10. Lang S. (1965). Division points on curves. Ann. Mat. Pure Appl. LXX: 229–234

    Article  Google Scholar 

  11. McQuillan M. (1995). Division points on semi-abelian varieties. Invent. Math. 120(1): 143–159

    Article  MATH  MathSciNet  Google Scholar 

  12. Poonen B. (2005). Multiples of subvarieties in algebraic groups over finite fields. Int. Math. Res. Not. 24: 1487–1498

    Article  MathSciNet  Google Scholar 

  13. Serre J.P. (1988). Algebraic Groups and Class Fields. Springer, Heidelberg

    MATH  Google Scholar 

  14. Serre J.P. (1979). Quelques propriétés des groupes algébriques commutatifs. Astérisque 69–70: 191–202

    Google Scholar 

  15. Vojta P. (1991). Siegel’s theorem in the compact case.. Ann. Math. 133: 509–548

    Article  MathSciNet  Google Scholar 

  16. Vojta P. (1996). Integral points on subvarieties of semi-abelian varieties. Invent. Math. 126: 133–181

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar G. Villareal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villareal, O.G. Moving subvarieties by endomorphisms. manuscripta math. 125, 81–93 (2008). https://doi.org/10.1007/s00229-007-0141-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0141-z

Mathematical Subject Classification (2000)

Navigation