Skip to main content

On vector bundles of finite order


We define Finsler metrics of finite order on a holomorphic vector bundle by imposing estimates on the holomorphic bisectional curvature. We generalize the vanishing theorem of Griffiths and Cornalba regarding Hermitian bundles of finite order to the Finsler context. We develop a value distribution theory for holomorphic maps from the projectivization of a vector bundle to projective space. We show that the projectivization of a Finsler bundle of finite order can be immersed into a projective space of sufficiently large dimension via a map of finite order.

This is a preview of subscription content, access via your institution.


X :

special affine variety of dimension n

\(\mathcal{O}_{\rm f.o.}\) :

sheaf of holomorphic functions on X of finite order, cf. (2.6)

\(\tau, \rho=e^{\tau /2}\) :

strictly plurisubharmonic exhaustive functions on X, cf. (1.3)

\(\tau', \rho'=e^{\tau' /2}\) :

plurisubharmonic exhaustive functions on X

d c :

the twisted derivative \(\frac{1}{4\pi \i}(\partial - \bar{\partial})\)

dd c :

the complex Hessian (also known as Levi form) \(\frac{1}{2\pi \i}\partial \bar{\partial}\)

\(\varphi = dd^c \tau\) :

Kähler form on X


the volume-form φn of φ

\(\psi = dd^c \tau'\) :

semipositive-definite form on X satisfying ψn = 0

\({\mathfrak{p}}\) :

generic projection from X to \({\mathbb{C}}^n\)

E :

holomorphic vector bundle of rank r + 1 on X


the dual of E

\({\mathcal{O}}_{\text{f.o.}}(E^*)\) :

sheaf of holomorphic sections of finite order of E*, cf. (5.11)

\({\mathbb{P}}(E)\) :

projectivization of E

E o :

complement of the zero-section in E

\(\mathcal{V}\) :

the vertical tangent bundle inside TE o

\(\mathcal {H}\) :

the horizontal tangent bundle inside TE o

p :

projection from E onto the base X


projection from \({\mathbb{P}}(E)\) onto the base X

\({\mathcal{L}}\) :

the hyperplane line bundle \({\mathcal{O}}_{{\mathbb{P}}(E)}(1)\)

\({\tilde \sigma}\) :

section of \(\mathcal{L}\) corresponding to section σ of E*, cf. (4.7)

g :

metric of finite order on det(E)

h :

Hermitian or Finsler metric on E

\(\tilde{h}\) :

Hermitian metric on \({\mathcal{L}}\) induced by h

\((G_{i{\rm \bar{j}}})\) :

Hermitian metric on \(\mathcal {V}\) induced by h

\({\tilde l}\) :

the Hermitian metric \(\tilde {h} \cdot \text{det}(G_{i\bar{\jmath}})^{-1} \cdot \pi^* g\) on \({\mathcal{L}}\)

\(\tilde \varphi\) :

Kähler form on \({\mathbb{P}}(E)\) , cf. (5.7)

\(\tilde \Phi\) :

the volume-form \(\tilde \varphi^{n+r}\) of \(\tilde \varphi\)

\(\tilde{\varphi}^{\mathcal{V}} ,\tilde{\varphi}^{\mathcal{H}}\) :

the vertical, resp. the horizontal part of \(\tilde \varphi\) , cf. paragraph after (3.23)


  1. Abate, M., Patrizio, G.: Fisler Metrics-A Global Approach. Lecture Notes in Mathematics vol. 1591, Springer, Berlin (1994)

  2. Andreotti A. and Vesentini E. (1965). Carleman estimates for the Laplace–Beltrami equation on complex manifolds. Publ. Math. I.H.E.S. 25: 81–130

    Google Scholar 

  3. Cao J. and Wong P.-M. (2003). Geometry of projectivized vector bundles. J. Math. Kyoto Univ. 43(2): 369–410

    MATH  Google Scholar 

  4. Carlson J. and Griffiths P. (1974). The order function for entire holomorphic mappings. In: Kujala, R.O. and Vitter, A.L. (eds) Value Distribution Theory, Part A, pp. Marcel Dekker, New York

    Google Scholar 

  5. Cornalba M. and Griffiths P. (1975). Analytic cycles and vector bundles on non-compact algebraic varieties. Invent. Math. 28: 1–106

    MATH  Article  Google Scholar 

  6. Cornalba M. and Shiffman B. (1972a). A Counterexample to the transcendental Bezôut problem. Ann. Math. 96: 402–406

    Article  Google Scholar 

  7. Griffiths P. (1972b). Function theory of finite order on algebraic varieties. J. Diff. Geom. 6: 285–306

    MATH  Google Scholar 

  8. Griffiths P. (1972c). Function theory of finite order on algebraic varieties. J. Diff. Geom. 7: 45–66

    MATH  Google Scholar 

  9. Hörmander L. (1965). L2-estimates and existence theorems for the \(\bar{\partial}\)-operator. Acta. Math. 113: 89–52

    MATH  Article  Google Scholar 

  10. Hörmander L. (1973). An Introduction to Complex Analysis in Several Variables. North-Holland, Amsterdam

    MATH  Google Scholar 

  11. Kodaira K. and Morrow J. (1971). Complex Manifolds. Rinehart and Winston, Holt

    MATH  Google Scholar 

  12. Lelong P. and Gruman L. (1986). Entire Functions of Several Complex Variables. Springer, Berlin

    MATH  Google Scholar 

  13. Maican, M.: Vector bundles of finite order on affine manifolds. Thesis at the University of Notre Dame (2005)

  14. Mulflur J., Vitter A. and Wong P.-M. (1981). Holomorphic functions of finite order on affine varieties. Duke Math. J. 48(2): 389–399

    MATH  Article  Google Scholar 

  15. Shabat, B.: Distribution of values of holomorphic mappings. Translations of Mathematical Monographs vol. 61. American Mathematical Society, Providence (1985)

  16. Shiffman, B., Sommese, A.: Vanishing Theorems on Complex Manifolds. Progress in Mathematics vol. 56, Birkhäuser, Boston (1985)

  17. Skoda H. (1971). Solution a la croissance du second problème de Cousin dans \({\mathbb{C}}^n\). Ann. Inst. Fourier, Grenoble 21(1): 11–23

    MATH  Google Scholar 

  18. Skoda H. (1972). Sous-ensembles analytiques d’ordre fini ou infini dans \({\mathbb{C}}^n\). Bull. Soc. Math. France 100: 353–408

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mario Maican.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maican, M. On vector bundles of finite order. manuscripta math. 124, 97–137 (2007).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Vector Bundle
  • Line Bundle
  • Global Section
  • Holomorphic Section
  • Holomorphic Vector Bundle