Skip to main content
Log in

SFT stability via power series extension over Prüfer domains

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

A ring D is called an SFT ring if for each ideal I of D, there exist a natural number k and a finitely generated ideal \({J\subseteq{I}}\) such that a kJ for each aI. We show that the power series ring \({D[\![x_1,\ldots, x_n]\!]}\) over an SFT Prüfer domain D is again an SFT ring even if D is infinite-dimensional. From this, it follows that every ideal-adic completion of D is also an SFT ring. We also show that \({D[\![x_1,\ldots, x_n]\!]_{D{\setminus}(0)}}\) is an n-dimensional regular ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson D.D., Kang B.G. and Park M.H. (1998). Anti-Archimedean rings and power series rings. Comm. Algebra 26(10): 3223–3238

    MATH  MathSciNet  Google Scholar 

  2. Arnold J.T. (1973). Krull dimension in power series rings. Trans. Am. Math. Soc. 177: 299–304

    Article  MATH  Google Scholar 

  3. Arnold J.T. (1973). Power series rings over Prüfer domains. Pacific J. Math. 44: 1–11

    MATH  MathSciNet  Google Scholar 

  4. Arnold J.T. (1981). Algebraic extensions of power series rings. Trans. Am. Math. Soc. 267: 95–100

    Article  MATH  Google Scholar 

  5. Arnold J.T. (1982). Power series rings with finite Krull dimension. Indiana J. Math. 31(6): 897–911

    Article  MATH  Google Scholar 

  6. Coykendall J. (2002). The SFT property does not imply finite dimension for power series rings. J. Algebra 256(1): 85–96

    Article  MATH  MathSciNet  Google Scholar 

  7. Fontana, M., Huckaba, J.A., Papick, I.J.: Prüfer Domains. Dekker, New York (1996)

  8. Gilmer R. (1967). A note on the quotient field of the domain D[ [X] ]. Proc. Am. Math. Soc. 18: 1138–1140

    Article  MATH  MathSciNet  Google Scholar 

  9. Gilmer, R.: Multiplicative Ideal Theory. Dekker, New York (1972)

  10. Kaplansky, I.: Commutative Rings. University of Chicago, Chicago (1968)

  11. Kang B.G. and Park M.H. (1999). Completion of a Prüfer domain. J. Pure Appl. Algebra 140: 125–135

    Article  MATH  MathSciNet  Google Scholar 

  12. Kang B.G. and Park M.H. (1999). On Mockor’s question. J. Algebra 216(2): 481–510

    Article  MATH  MathSciNet  Google Scholar 

  13. Nagata M. (1962). Local Rings. Interscience, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Park.

Additional information

B. G. Kang was supported by Korea Research Foundation Grant (KRF 2002-041-C00008).

M. H. Park was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-003-C00003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B.G., Park, M.H. SFT stability via power series extension over Prüfer domains. manuscripta math. 122, 353–363 (2007). https://doi.org/10.1007/s00229-007-0073-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-007-0073-7

Keywords

Navigation