Abstract
We study the Navier-Stokes equations for compressible barotropic fluids in a bounded or unbounded domain Ω of R 3. We first prove the local existence of solutions (ρ,u) in C([0,T*]; (ρ ∞ +H 3(Ω)) × under the assumption that the data satisfies a natural compatibility condition. Then deriving the smoothing effect of the velocity u in t>0, we conclude that (ρ,u) is a classical solution in (0,T **)×Ω for some T ** ∈ (0,T *]. For these results, the initial density needs not be bounded below away from zero and may vanish in an open subset (vacuum) of Ω.
Similar content being viewed by others
References
Boldrini, J.L., Rojas-Medar, M. A., Fernández-Cara, E.: Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids. J. Math. Pures Appl. 82, 1499–1525 (2003)
Cho, Y., Jin, B. J.: Blow-up of viscous heat-conducting compressible flows. to appear in J. Math. Anal. Appl.
Cho, Y., Kim, H.: Existence results for viscous polytropic fluids with vacuum. Hokkaido University Preprint Series in Math.
Cho, Y., Choe, H. J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)
Choe, H. J., Kim, H.: Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Differential Equations 190, 504–523 (2003)
Choe, H. J., Kim, H.: Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids. Math. Methods Appl. Sci. 28, 1–28 (2005)
Danchin, R.: Global existence in critical spaces for compressible Navier-Stokes equations. Invent. math. 141, 579–614 (2000)
Desjardins, B.: Regularity of weak solutions of the compressible isentropic Navier-Stokes equations. Comm. Partial Differential Equations 22, 977–1008 (1997)
Feireisl, E.: Compressible Navier-Stokes equations with a non-monotone pressure law. J. Differential Equations 184, 97–108 (2002)
Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. fluid Mech. 3, 358–392 (2001)
Feireisl, E., Novotný, A., Petzeltová, H.: On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid. Math. Methods Appl. Sci. 25, 1045–1073 (2002)
Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. New York: Springer-Verlag, 1994
Hoff, D.: Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differential Equations 120, 215–254 (1995)
Itaya, N.: On the Cauchy problem for the system of fundamental quations describing the movement of compressible viscous fluids. Kodai Math. Sem. Rep. 23, 60–120 (1971)
Jiang, S., Zhang, P.: On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm. Math. Phys. 215, 559–581 (2001)
Jiang, S., Zhang, P.: Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids. J. Math. Pures Appl. 82, 949–973 (2003)
Lions, P.L.: Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques. C.R. Acad. Sci. 316, 1335–1340 (1993)
Lions, P.L.: Mathematical Topics in Fluid Mechanics Vol. 2. Oxford: Clarendon Press 1998
Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)
Matsumura, A., Nishida, T.: The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids. Comm. Math. Phys. 89, 445–464 (1983)
Nash, J.: Le probléme de Cauchy pour les équations différentielles d'un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)
Salvi, R., Straškraba, I.: Global existece for viscous compressible fluids and their behavior as t→;∞. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 40, 17–51 (1993)
Simon, J.: Compact sets in the space L p(0,T;B), Ann. Mat. Pura Appl. 146, 65–96 (1987)
Solonnikov, V. A.: Solvability of the initial boundary value problem for the equation of a viscous compressible fluid. J. Sov. Math. 14, 1120–1133 (1980)
Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. Res. Inst. Math. Sci. Kyoto Univ. 13, 193–253 (1971)
Temam, R.: Behaviour at time t=0 of the solutions of semi-linear evolution equations. J. Differential Equations 43, 73–92 (1982)
Temam, R.: Navier-Stokes equations: Theory and Numerical analysis Amsterdam: North-Holland 1984
Valli, A. An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (IV) 130, 197–213 (1982); (IV) 132, 399–400 (1982)
Valli, A.: Periodic and stationary solutions for compressible Navier-Stokes equations via a statiblity method. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 10, 607–647 (1983)
Valli, A., Zajaczkowski, W.M.: Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)
Xin, Z. Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm. Pure Appl. Math. 51, 229–240 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cho, Y., Kim, H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. manuscripta math. 120, 91–129 (2006). https://doi.org/10.1007/s00229-006-0637-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00229-006-0637-y