Skip to main content
Log in

On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We study the Navier-Stokes equations for compressible barotropic fluids in a bounded or unbounded domain Ω of R 3. We first prove the local existence of solutions (ρ,u) in C([0,T*]; (ρ +H 3(Ω)) × under the assumption that the data satisfies a natural compatibility condition. Then deriving the smoothing effect of the velocity u in t>0, we conclude that (ρ,u) is a classical solution in (0,T **)×Ω for some T ** ∈ (0,T *]. For these results, the initial density needs not be bounded below away from zero and may vanish in an open subset (vacuum) of Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boldrini, J.L., Rojas-Medar, M. A., Fernández-Cara, E.: Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids. J. Math. Pures Appl. 82, 1499–1525 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cho, Y., Jin, B. J.: Blow-up of viscous heat-conducting compressible flows. to appear in J. Math. Anal. Appl.

  3. Cho, Y., Kim, H.: Existence results for viscous polytropic fluids with vacuum. Hokkaido University Preprint Series in Math.

  4. Cho, Y., Choe, H. J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Choe, H. J., Kim, H.: Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J. Differential Equations 190, 504–523 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Choe, H. J., Kim, H.: Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids. Math. Methods Appl. Sci. 28, 1–28 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Danchin, R.: Global existence in critical spaces for compressible Navier-Stokes equations. Invent. math. 141, 579–614 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Desjardins, B.: Regularity of weak solutions of the compressible isentropic Navier-Stokes equations. Comm. Partial Differential Equations 22, 977–1008 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Feireisl, E.: Compressible Navier-Stokes equations with a non-monotone pressure law. J. Differential Equations 184, 97–108 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. fluid Mech. 3, 358–392 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feireisl, E., Novotný, A., Petzeltová, H.: On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid. Math. Methods Appl. Sci. 25, 1045–1073 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations. New York: Springer-Verlag, 1994

  13. Hoff, D.: Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differential Equations 120, 215–254 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Itaya, N.: On the Cauchy problem for the system of fundamental quations describing the movement of compressible viscous fluids. Kodai Math. Sem. Rep. 23, 60–120 (1971)

    MATH  MathSciNet  Google Scholar 

  15. Jiang, S., Zhang, P.: On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations. Comm. Math. Phys. 215, 559–581 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jiang, S., Zhang, P.: Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids. J. Math. Pures Appl. 82, 949–973 (2003)

    Article  MathSciNet  Google Scholar 

  17. Lions, P.L.: Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques. C.R. Acad. Sci. 316, 1335–1340 (1993)

    MATH  Google Scholar 

  18. Lions, P.L.: Mathematical Topics in Fluid Mechanics Vol. 2. Oxford: Clarendon Press 1998

  19. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MATH  MathSciNet  Google Scholar 

  20. Matsumura, A., Nishida, T.: The initial boundary value problems for the equations of motion of compressible and heat-conductive fluids. Comm. Math. Phys. 89, 445–464 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nash, J.: Le probléme de Cauchy pour les équations différentielles d'un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)

    MATH  MathSciNet  Google Scholar 

  22. Salvi, R., Straškraba, I.: Global existece for viscous compressible fluids and their behavior as t→;∞. J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 40, 17–51 (1993)

    MATH  MathSciNet  Google Scholar 

  23. Simon, J.: Compact sets in the space L p(0,T;B), Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MATH  Google Scholar 

  24. Solonnikov, V. A.: Solvability of the initial boundary value problem for the equation of a viscous compressible fluid. J. Sov. Math. 14, 1120–1133 (1980)

    Article  MATH  Google Scholar 

  25. Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. Res. Inst. Math. Sci. Kyoto Univ. 13, 193–253 (1971)

    Google Scholar 

  26. Temam, R.: Behaviour at time t=0 of the solutions of semi-linear evolution equations. J. Differential Equations 43, 73–92 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  27. Temam, R.: Navier-Stokes equations: Theory and Numerical analysis Amsterdam: North-Holland 1984

  28. Valli, A. An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (IV) 130, 197–213 (1982); (IV) 132, 399–400 (1982)

    Google Scholar 

  29. Valli, A.: Periodic and stationary solutions for compressible Navier-Stokes equations via a statiblity method. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 10, 607–647 (1983)

    MATH  MathSciNet  Google Scholar 

  30. Valli, A., Zajaczkowski, W.M.: Navier-Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xin, Z. Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm. Pure Appl. Math. 51, 229–240 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggeun Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, Y., Kim, H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. manuscripta math. 120, 91–129 (2006). https://doi.org/10.1007/s00229-006-0637-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-006-0637-y

Mathematics Subject Classification (2000)

Navigation