Skip to main content
Log in

Laguerre geometry of hypersurfaces in \(\mathbb{R}^{n}\)

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Laguerre geometry of surfaces in \(\mathbb{R}^{3}\) is given in the book of Blaschke [Vorlesungen über Differentialgeometrie, Springer, Berlin Heidelberg New York (1929)], and has been studied by Musso and Nicolodi [Trans. Am. Math. soc. 348, 4321–4337 (1996); Abh. Math. Sem. Univ. Hamburg 69, 123–138 (1999); Int. J. Math. 11(7), 911–924 (2000)], Palmer [Remarks on a variation problem in Laguerre geometry. Rendiconti di Mathematica, Serie VII, Roma, vol. 19, pp. 281–293 (1999)] and other authors. In this paper we study Laguerre differential geometry of hypersurfaces in \(\mathbb{R}^{n}\). For any umbilical free hypersurface \(x: M \rightarrow \mathbb{R}^{n}\) with non-zero principal curvatures we define a Laguerre invariant metric g on M and a Laguerre invariant self-adjoint operator \(\mathbb{S}\): TM → TM, and show that \(\{g, \mathbb{S}\}\) is a complete Laguerre invariant system for hypersurfaces in \(\mathbb{R}^{n}\) with n≥ 4. We calculate the Euler–Lagrange equation for the Laguerre volume functional of Laguerre metric by using Laguerre invariants. Using the Euclidean space \(\mathbb{R}^{n}\), the semi-Euclidean space \(\mathbb{R}^{n}_{1}\) and the degenerate space \(\mathbb{R}^{n}_{0}\) we define three Laguerre space forms \(U\mathbb{R}^{n}\), \(U\mathbb{R}^{n}_{1}\) and \(U\mathbb{R}^{n}_{0}\) and define the Laguerre embeddings \( U\mathbb{R}^{n}_{1} \rightarrow U \mathbb{R}^{n}\) and \(U\mathbb{R}^{n}_{0} \rightarrow U \mathbb{R}^{n}\), analogously to what happens in the Moebius geometry where we have Moebius space forms S n, \(\mathbb{H}^{n}\) and \(\mathbb{R}^n\) (spaces of constant curvature) and conformal embeddings \(\mathbb{H}^n \rightarrow S^n\) and \(\mathbb{R}^n \rightarrow S^n\) [cf. Liu et al. in Tohoku Math. J. 53, 553–569 (2001) and Wang in Manuscr. Math. 96, 517–534 (1998)]. Using these Laguerre embeddings we can unify the Laguerre geometry of hypersurfaces in \(\mathbb{R}^n\), \(\mathbb{R}^n_1\) and \(\mathbb{R}^n_0\). As an example we show that minimal surfaces in \(\mathbb{R}^3_1\) or \(\mathbb{R}_0^3\) are Laguerre minimal in \(\mathbb{R}^3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschke W. (1929) Vorlesungen über Differential geometrie, vol 3. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Cecil T.E. (1992) Lie sphere geometry: with applications to submanifolds. Spinger, Berlin Heidelberg New York

    MATH  Google Scholar 

  3. Cecil T.E., Chern S.S.: Dupin submanifolds in Lie sphere geometry. In: Lecture Notes in Mathematics, vol. 1369, pp. 1–48. Springer, Berlin Heidelberg New York (1989)

  4. Liu H.L., Wang C.P., Zhao G.S. (2001) Moebius isotropic submanifolds in S n. Tohoku Math. J. 53, 553–569

    Article  MathSciNet  MATH  Google Scholar 

  5. Musso E., Nicolodi L. (1996) A variational problem for surfaces in Laguerre geometry. Trans. Am. Math. Soc. 348, 4321–4337

    Article  MathSciNet  MATH  Google Scholar 

  6. Musso E., Nicolodi L. (1999) Laguerre geometry of surfaces with plane lines of curvature. Abh. Math. Sem. Univ. Hamburg 69, 123–138

    Article  MathSciNet  MATH  Google Scholar 

  7. Musso E., Nicolodi L. (2000) The Bianchi-Darboux transformation of L-isothermic surfaces. Int. J. Math. 11(7): 911–924

    Article  MathSciNet  MATH  Google Scholar 

  8. Palmer B.: Remarks on a variation problem in Laguerre geometry. Rendiconti di Mathematica, Serie VII, Roma, vol. 19, pp. 281–293 (1999)

  9. Pinkall U. (1985) Dupin hypersurfaces. Math. Ann. 270, 427–440

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang C.P. (1998) oebius geometry of submanifolds in S n. Manuscr. Math. 96, 517–534

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changping Wang.

Additional information

C. Wang Partially supported by RFDP and Chuang-Xin-Qun-Ti of NSFC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Wang, C. Laguerre geometry of hypersurfaces in \(\mathbb{R}^{n}\) . manuscripta math. 122, 73–95 (2007). https://doi.org/10.1007/s00229-006-0058-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-006-0058-y

Mathematics Subject Classification (2000)

Navigation