Skip to main content
Log in

Is Every Toric Variety an M-Variety?

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

An Erratum to this article was published on 17 June 2006

Abstract

A complex algebraic variety X defined over the real numbers is called an M-variety if the sum of its Betti numbers (for homology with closed supports and coefficients in \(\mathbb{Z} /2\)) coincides with the corresponding sum for the real part of X. It has been known for a long time that any nonsingular complete toric variety is an M-variety. In this paper we consider whether this remains true for toric varieties that are singular or not complete, and we give a positive answer when the dimension of X is less than or equal to 3 or when X is complete with isolated singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allday C., Puppe V. (1993). Cohomological methods in transformation groups. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Biss D., Guillemin V., Holm T. (2004). The mod 2 cohomology of fixed point sets of anti-symplectic involutions. Adv. Math. 185: 370–399

    Article  MATH  MathSciNet  Google Scholar 

  3. Borel A., Haefliger A. (1961). La classe d’homologie fondamentale d’un espace analytique. Bull. Soc. Math. France 89: 461–513

    MATH  MathSciNet  Google Scholar 

  4. Brion M. (1997). The structure of the polytope algebra. Tôhoku Math. J. 49: 1–32

    MATH  MathSciNet  Google Scholar 

  5. Danilov V.I. (1978). The geometry of toric varieties. Russian Math. Surveys 33: 97–154

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis M., Januszkiewicz T. (1991). Convex polytopes, coxeter orbifolds and torus actions. Duke Math. J. 62: 417–451

    Article  MATH  MathSciNet  Google Scholar 

  7. Delaunay, C.: Real structures on smooth compact toric surfaces. In: Goldman, R., Krasuaskas, R. (eds.) Topics in algebraic geometry and geometric modeling, Contemp. Math., vol. 334, pp 267–290. Providence, RI: Amer. Math. Soc. (2003)

  8. Delaunay, C.: Real structures on compact toric varieties. Ph.D. thesis, Université de Strasbourg, (2004)

  9. Duistermaat H. (1983). Convexity and tightness for restrictions of Hamiltonian functions to fixed point sets of an antisymplectic involution. Trans. Amer. Math. Soc. 275: 417–429

    Article  MATH  MathSciNet  Google Scholar 

  10. Fischli, S.: On toric varieties. Ph.D. thesis, Universität Bern, 1992. Available at http://www.hta-be.bfh.ch/~fischli/

  11. Franz, M.: Maple package Torhom, version 1.3.0, September 13, 2004. Available at http://www-fourier.ujf-grenoble.fr/~franz/maple/torhom.html

  12. Franz, M.: The integral cohomology of smooth toric manifolds. To appear in Proc. Steklov Inst. Math.

  13. Fulton W. (1993). Introduction to toric varieties. Princeton University Press, Princeton

    MATH  Google Scholar 

  14. Gelfand I., Kapranov V., Zelevinsky A. (1994). Discriminants, resultants, and multidimensional determinants. Birkhäuser, Boston

    MATH  Google Scholar 

  15. Itenberg, I., Viro, O.: Maximal real algebraic hypersurfaces of projective space. (in press)

  16. Jordan, A.: Homology and cohomology of toric varieties. Ph. D. thesis, Universität Konstanz, Konstanzer Schriften in Mathematik und Informatik 57, 1998. Available at http://www.inf.uni-konstanz.de/Schriften/preprints-1998.html#057

  17. Krasnov, V.A.: Real algebraically maximal varieties. Mat. Zametki 73, 853–860 (2003), English translation in: Math. Notes 73, 806–812 (2003)

  18. Mac Lane S. (1967). Homology. Springer, New York

    Google Scholar 

  19. McCrory C., Parusiński A. (2003). Virtual Betti numbers of real algebraic varieties. Comptes Rendus Acad. Sci. Paris, Ser. I 336: 763–768

    MATH  Google Scholar 

  20. Oda T. (1988). Convex bodies and algebraic geometry. Springer-Verlag, New York

    MATH  Google Scholar 

  21. Sottile, F.: Toric ideals, real toric varieties, and the moment map. In: Goldman, R., Krasuaskas, R. (eds.) Topics in algebraic geometry and geometric modeling, Contemp. Math., vol 334, pp 225–240. Providence, RI: Amer. Math. Soc. 2003

  22. Totaro, B.: Chow groups, Chow cohomology, and linear varieties. To appear in J. Alg. Geom. Available at http://www.dpmms.cam.ac.uk/~bt219/papers.html

  23. Wilson G. (1978). Hilbert’s sixteenth problem. Topology 17: 53–73

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00229-006-0019-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bihan, F., Franz, M., McCrory, C. et al. Is Every Toric Variety an M-Variety?. manuscripta math. 120, 217–232 (2006). https://doi.org/10.1007/s00229-006-0004-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-006-0004-z

Keywords

Navigation