Skip to main content
Log in

The Rees algebra of a positive normal affine semigroup ring

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let R be a positive normal affine semigroup ring of dimension d and let be the maximal homogeneous ideal of R. We show that the integral closure of is equal to for all n ∈ℕ with nd − 2. From this we derive that the Rees algebra R[ t] is normal in case that d ≤ 3. If emb dim(R) = d + 1, we can give a necessary and sufficient condition for R[ t] to be normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boutot, J.-F.: Singularités rationelles et quotients par les groupes réductifs. Invent. Math. 88, 65–68 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bruns, W., Gubeladze, J.: Divisorial linear algebra of normal semigroup rings. Alg. Represent. Theory 6, 139–168 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruns, W., Gubeladze, J.: Polytopes, rings and K-theory. Preprint, 2005

  4. Bruns, W., Herzog, J.: Cohen-Macaulay rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1998

  5. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Graduate Texts in Mathematics 150, Springer, 1995

  6. Goto, S., Shimoda, Y.: On the Rees algebra of Cohen-Macaulay local rings. In: R.N. Draper (ed.), Analytic Methods in Commutative Algebra. Lect. Notes in Pure and Appl. Math. 68, Marcel Dekker, 1979, pp. 201–231

  7. Huneke, C.: On the associated graded ring of an ideal. Illinois J. Math. 104, 1043–1062 (1982)

    MATH  MathSciNet  Google Scholar 

  8. Lipman, J.: Cohen-Macaulayness in graded algebras. Math. Res. Lett. 1, 149–157 (1994)

    MATH  MathSciNet  Google Scholar 

  9. Lipman, J., Teissier, B.: Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals. Michigan Math. J. 28, 97–116 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Matsumura, H.: Commutative ring theory. Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986

  11. Ribenboim, P.: Anneaux de Rees Intégralment Clos. J. Reine Angew. Math. 204, 99–107 (1960)

    MATH  MathSciNet  Google Scholar 

  12. Reid, L., Roberts, L.G., Vitulli, M.A.: Some results on normal homogeneous ideals. Commun. Algebra 31, 4485–4506 (2003)

    Article  MATH  Google Scholar 

  13. Smith, K.E.: F-rational rings have rational singularities. Am. J. Math. 119, 159–180 (1997)

    MATH  Google Scholar 

  14. Vasconcelos, W.: Arithmetic of Blowup Algebras. London Math. Soc. Lecture Note Series 195, Cambridge University Press, 1994

  15. Vasconcelos, W.: Integral Closure. Springer Monographs in Mathematics, Springer, 2005

  16. Valabrega, P., Valla, G.: Form rings and regular sequences. Nagoya Math. J. 72, 93–101 (1978)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Wiebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiebe, A. The Rees algebra of a positive normal affine semigroup ring. manuscripta math. 120, 27–38 (2006). https://doi.org/10.1007/s00229-005-0615-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-005-0615-9

Keywords

Navigation