Advertisement

manuscripta mathematica

, Volume 115, Issue 4, pp 401–415 | Cite as

Duality and the normalization of standard intertwining operators

  • Dubravka Ban
  • Chris Jantzen
Article

Abstract.

Normalized standard intertwining operators associated to an induced representation and its dual (dual in the sense of Aubert) arise in work on a conjecture of Arthur about R-groups. The purpose of this paper is to address the question of relating the normalizing factors used.

Keywords

Number Theory Algebraic Geometry Topological Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arthur, J.: Unipotent automorphic representations: conjectures. Astérisque, 171–172, 13–71 (1989)Google Scholar
  2. 2.
    Arthur, J.: Intertwining operators and residues 1.weighted characters. J. Func. Anal. 84, 19–84 (1989)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aubert, A.-M.: Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique. Trans. Am. Math. Soc. 347, 2179–2189 (1995) and Erratum, ibid. 348, 4687–4690 (1996)zbMATHGoogle Scholar
  4. 4.
    Ban, D.: Jacquet modules of parabolically induced representations and Weyl groups. Can. J. Math. 53, 675–695 (2001)zbMATHGoogle Scholar
  5. 5.
    Ban, D.: The Aubert involution and R-groups. Ann. Sci. Éc. Norm. Sup. 35, 673–693 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ban, D.: Linear independence of intertwining operators. To appear in J. AlgebraGoogle Scholar
  7. 7.
    Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive p-adic groups, I. Ann. Sci. Éc. Norm. Sup. 10, 441–472 (1977)zbMATHGoogle Scholar
  8. 8.
    Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Princeton University Press, Princeton, 1980Google Scholar
  9. 9.
    Casselman, W.: Introduction to the theory of admissible representations of p-adic reductive groups. PreprintGoogle Scholar
  10. 10.
    Goldberg, D., Shahidi, F.: Automorphic L-functions, intertwining operators and the irreducible tempered representations of p-adic groups. PreprintGoogle Scholar
  11. 11.
    Harish-Chandra: Harmonic analysis on reductive p-adic groups. Proceedings of Symposia in Pure Mathematics 26, 167–192 (1974)Google Scholar
  12. 12.
    Iwahori, N., Matsumoto, H.: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups. Publ. Math. IHES 25, 5–48 (1965)zbMATHGoogle Scholar
  13. 13.
    Jantzen, C.: On the Iwahori-Matsumoto involution and applications. Ann. Sci. Éc. Norm. Sup. 28, 527–547 (1995)zbMATHGoogle Scholar
  14. 14.
    Knapp, A.W., Stein, E.M.: Intertwining operators for semisimple groups. Ann. Math. 93, 489–578 (1971)zbMATHGoogle Scholar
  15. 15.
    Langlands, R.: On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Math. 544, 1976Google Scholar
  16. 16.
    Schneider, P., Stuhler, U.: Representation theory and sheaves on the Bruhat-Tits building. Publ. Math. IHES 85, 97–191 (1997)zbMATHGoogle Scholar
  17. 17.
    Shahidi, F.: On certain L-functions. Am. J. Math. 103, 297–355 (1981)zbMATHGoogle Scholar
  18. 18.
    Shahidi, F.: A proof of Langlands’ conjecture on Plancherel measures; Complementary series for p-adic groups. Ann. Math. 132, 273–330 (1990)zbMATHGoogle Scholar
  19. 19.
    Silberger, A.: The Langlands quotient theorem for p-adic groups. Math. Ann. 236, 95–104 (1978)zbMATHGoogle Scholar
  20. 20.
    Silberger, A.: Introduction to harmonic analysis on reductive p-adic groups. Math. Notes 23, Princeton University Press, Princeton, NJ, 1979Google Scholar
  21. 21.
    Tadić, M.: Notes on representations of non-archimedean SL(n). Pac. J. Math. 152, 375–396 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dubravka Ban
    • 1
  • Chris Jantzen
    • 2
  1. 1.Department of MathematicsSouthern Illinois UniversityCarbondaleUSA
  2. 2.Department of MathematicsEast Carolina UniversityGreenvilleUSA

Personalised recommendations