manuscripta mathematica

, Volume 115, Issue 2, pp 239–258 | Cite as

Symmetry properties of solutions of semilinear elliptic equations in the plane

  • Alessio Porretta
  • Laurent Véron


If g is a nondecreasing nonnegative continuous function we prove that any solution of −Δu+g(u)=0 in a half plane which blows-up locally on the boundary, in a fairly general way, depends only on the normal variable. We extend this result to problems in the complement of a disk. Our main application concerns the exponential nonlinearity g(u)=e au , or power–like growths of g at infinity. Our method is based upon a combination of the Kelvin transform and moving plane method.

Keywords or Phrases

Elliptic equations Kelvin transform Asymptotic expansions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research has been conducted while the first author was visiting Université de Tours in the framework of the European Project “Nonlinear Parabolic Partial Differential Equations Describing Front Propagation and Other Singular Phenomena”, RTN contract: HPRN-CT-2002-00274.


  1. 1.
    Bellman, R.: Stability Theory of Differential Equation. Mcgraw-Hill Book Company, Inc. 1953Google Scholar
  2. 2.
    Berestycki, H., Caffarelli, L., Nirenberg, L.: Further qualitative properties for elliptic equations in unbounded domains. Dedicated to Ennio De Giorgi. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1–2), 69–94 (1998)Google Scholar
  3. 3.
    Borsuk, M.V., Kondratiev, V.A.: The behaviour of the solutions of the Dirichlet problem for a second-order quasilinear elliptic equation near a corner point. Differentsial’nye Uravneya 24, 1778–1784 (1988); English translation in Differential Equations 24, 1185–1190 (1989)zbMATHGoogle Scholar
  4. 4.
    Brezis, H., Lieb, E.H.: Long range atomic potentials in Thomas-Fermi theory. Commun. Math. Phys. 65, 231–246 (1979)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 571–597 (1989)Google Scholar
  6. 6.
    Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dong, W.: Symmetry for boundary blow-up solutions of elliptic equations in a half-space. PreprintGoogle Scholar
  8. 8.
    Gilbarg, D., Trudinger, N.S.: Partial Differential Equations of Second Order. 2nd Ed. Springer-Verlag, Berlin/New-York, 1983Google Scholar
  9. 9.
    Keller, J.B.: On solutions of Δu=f(u). Commun. Pure Appl. Math. 10, 503–510 (1957)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Marcus, M., Véron, L.: Existence and uniqueness results for large solutions of general nonlinear elliptic equations. J. Evolution Equ. 3, 637–652 (2003)CrossRefGoogle Scholar
  11. 11.
    Osserman, R.: On the inequality Δuf(u). Pacific J. Math. 7, 1641–1647 (1957)zbMATHGoogle Scholar
  12. 12.
    Ratto, A., Rigoli, M., Véron, L.: Scalar curvature and conformal deformation of hyperbolic space. J. Funct. Anal. 121, 15–77 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Vazquez, J.L., Véron, L.: Singularities of elliptic equations with an exponential nonlinearity. Math. Ann. 269, 119–135 (1984)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Vazquez, J.L., Véron, L.: Isolated Singularities of some semilinear elliptic equations. J. Diff. Eq. 60, 301–321 (1985)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Véron, L.: Global behaviour and symmetry properties of singular solutions of nonlinear elliptic equations. Ann. Fac. Sci. Toulouse 6, 1–31 (1984)MathSciNetGoogle Scholar
  16. 16.
    Véron, L.: Semilinear elliptic equations with uniform blow-up on the boundary. J. Anal. Math. 59, 231–250 (1992)MathSciNetGoogle Scholar
  17. 17.
    Véron, L.: Singularities of Solutions of Second Order Quasilinear Equations. Pitman Research Notes in Math. 353, Addison Wesley Longman Inc. (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alessio Porretta
    • 1
  • Laurent Véron
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItalia
  2. 2.Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 6083Université François RabelaisToursFrance

Personalised recommendations