manuscripta mathematica

, Volume 112, Issue 4, pp 433–440 | Cite as

Cycles in G-orbits in G -flag manifolds

  • A. HuckleberryEmail author
  • B. Ntatin


There is a natural duality between orbits γ of a real form G of a complex semisimple group G on a homogeneous rational manifold Z=G /P and those κ of the complexification K of any of its maximal compact subgroups K: (γ,κ) is a dual pair if γ∩κ is a K-orbit. The cycle space C(γ) is defined to be the connected component containing the identity of the interior of {g:g(κ)∩γ is non-empty and compact}. Using methods which were recently developed for the case of open G-orbits, geometric properties of cycles are proved, and it is shown that C(γ) is contained in a domain defined by incidence geometry. In the non-Hermitian case this is a key ingredient for proving that C(γ) is a certain explicitly computable universal domain.


Geometric Property Dual Pair Compact Subgroup Real Form Natural Duality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhiezer,~D., Gindikin,~S.: On the Stein extensions of real symmetric spaces. Math. Annalen 286, 1–12 (1990)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Barchini,~L.: Stein extensions of real symmetric spaces and the geometry of the flag manifold. To appearGoogle Scholar
  3. 3.
    Barlet,~D., Kozairz,~V.: Fonctions holomorphes sur l’espace des cycles: la méthode d’intersection. Math. Res. Lett. 7, 537–550 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Barlet,~D., Magnusson,~J.: Intégration de classes de cohomologie méromorphes et diviseurs d’incidence. Ann. Sci. École Norm. Sup. 31, 811–842 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bremigan,~R., Lorch,~J.: Orbit duality for flag manifolds. Manuscripta Math. 109, 233–261 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Burns,~D., Halverscheid,~S., Hind,~R.: The geometry of Grauert tubes and complexification of symmetric spaces. To appear in Duke Math. J.Google Scholar
  7. 7.
    Crittenden,~R.J.: Minimum and conjugate points in symmetric spaces. Canad. J. Math. 14, 320–328 (1962)zbMATHGoogle Scholar
  8. 8.
    Fels,~G., Huckleberry,~A.: Characterization of cycle domains via Kobayashi hyperbolicity. (AG/0204341)Google Scholar
  9. 9.
    Gindikin,~S., Matsuki,~T.: Stein extensions of riemannian symmetric spaces and dualities of orbits on flag manifolds. MSRI Preprint 2001–028Google Scholar
  10. 10.
    Huckleberry,~A.: On certain domains in cycle spaces of flag manifolds. Math. Annalen 323, 797–810 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Huckleberry,~A., Wolf,~J.A.: Schubert varieties and cycle spaces. (AG/0204033, to appear in Duke Math. J.)Google Scholar
  12. 12.
    Huckleberry,~A., Wolf,~J.A.: Cycles Spaces of Flag Domains: A Complex Geometric Viewpoint (RT/0210445)Google Scholar
  13. 13.
    Matsuki,~T.: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Japan 31 n.2 331–357 (1979)Google Scholar
  14. 14.
    Mirkovič, I., Uzawa, K., Vilonen, K.: Matsuki correspondence for sheaves. Invent. Math. 109, 231–245 (1992)MathSciNetGoogle Scholar
  15. 15.
    Wolf,~J.A.: The action of a real semisimple Lie group on a complex manifold, I: Orbit structure and holomorphic arc components. Bull. Am. Math. Soc. 75, 1121–1237 (1969)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  1. 1.Fakultät für MathematikRuhr–Universität BochumBochumGermany

Personalised recommendations