Skip to main content

Advertisement

Log in

External validation of population pharmacokinetic models of tacrolimus in Thai adult liver transplant recipients

  • Research
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Several population pharmacokinetic models of tacrolimus in liver transplant patients were built, and their predictability was evaluated in their settings. However, the extrapolation in the prediction was unclear. This study aimed to evaluate the predictive performance of published tacrolimus models in adult liver transplant recipients using data from the Thai population as an external dataset.

Methods

The selected published models were systematically searched and evaluated for their quality. The external dataset of patients who underwent the first liver transplant and received immediate-release tacrolimus was used to assess the predictive performance of each selected model. Trough concentrations between 3 and 6 months were retrospectively collected to evaluate the predictability of each model using prediction-based diagnostics, simulation-based diagnostics, and Bayesian forecasting.

Results

Sixty-seven patients with 360 trough concentrations and eight selected published models were included in this study. None of the models met the predictive precision criteria in prediction-based diagnostics. Meanwhile, four published population pharmacokinetic models showed a normal distribution in NPDE testing. Regarding Bayesian forecasting, all models improved their forecasts with at least one prior information data point.

Conclusion

Bayesian forecasting is more accurate and precise than other testing methods for predicting drug concentrations. However, none of the evaluated models provides satisfactory predictive performance for generalization to Thai liver transplant patients. This underscores the need for future research to develop population PK models tailored to the Thai population. Such efforts should consider the inclusion of nonlinear pharmacokinetics and region-specific factors, including genetic variability, to improve model accuracy and applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All datasets collected and analyzed are available at reasonable request from the corresponding author.

Code availability

Not applicable.

References

  1. Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, Lemaitre F, Marquet P, Seger C, Shipkova M, Vinks A, Wallemacq P, Wieland E, Woillard JB, Barten MJ, Budde K, Colom H, Dieterlen MT, Elens L, Johnson-Davis KL, Kunicki PK, MacPhee I, Masuda S, Mathew BS, Millán O, Mizuno T, Moes DAR, Monchaud C, Noceti O, Pawinski T, Picard N, van Schaik R, Sommerer C, Vethe NT, de Winter B, Christians U, Bergan S (2019) Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit 41(3):261–307. https://doi.org/10.1097/ftd.0000000000000640

    Article  CAS  PubMed  Google Scholar 

  2. Venkataramanan R, Jain A, Warty VS, Abu-Elmagd K, Alessiani M, Lever J, Krajak A, Flowers J, Mehta S, Zuckerman S et al (1991) Pharmacokinetics of FK 506 in transplant patients. Transplant Proc 23(6):2736–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V, McMichael J, Lever J, Burckart G, Starzl T (1995) Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet 29(6):404–430. https://doi.org/10.2165/00003088-199529060-00003

    Article  CAS  PubMed  Google Scholar 

  4. Beringer P (2018) Winter’s basic clinical pharmacokinetics. Wolters Kluwer Health, Philadelphia, p 2018

    Google Scholar 

  5. Ette EI, Williams PJ (2004) Population pharmacokinetics I: background, concepts, and models. Ann Pharmacother 38(10):1702–1706. https://doi.org/10.1345/aph.1D374

    Article  PubMed  Google Scholar 

  6. Antignac M, Hulot JS, Boleslawski E, Hannoun L, Touitou Y, Farinotti R, Lechat P, Urien S (2005) Population pharmacokinetics of tacrolimus in full liver transplant patients: modelling of the post-operative clearance. Eur J Clin Pharmacol 61(5–6):409–416. https://doi.org/10.1007/s00228-005-0933-6

    Article  CAS  PubMed  Google Scholar 

  7. Fukatsu S, Yano I, Igarashi T, Hashida T, Takayanagi K, Saito H, Uemoto S, Kiuchi T, Tanaka K, Inui K, Tanaka K, Inui K (2001) Population pharmacokinetics of tacrolimus in adult recipients receiving living-donor liver transplantation. Eur J Clin Pharmacol 57(6–7):479–484. https://doi.org/10.1007/s002280100331

    Article  CAS  PubMed  Google Scholar 

  8. Sam WJ, Tham LS, Holmes MJ, Aw M, Quak SH, Lee KH, Lim SG, Prabhakaran K, Chan SY, Ho PC (2006) Population pharmacokinetics of tacrolimus in whole blood and plasma in asian liver transplant patients. Clin Pharmacokinet 45(1):59–75. https://doi.org/10.2165/00003088-200645010-00004

    Article  CAS  PubMed  Google Scholar 

  9. Undre NA, Schäfer A (1998) Factors affecting the pharmacokinetics of tacrolimus in the first year after renal transplantation. European Tacrolimus Multicentre Renal Study Group. Transplant Proc 30(4):1261–1263. https://doi.org/10.1016/s0041-1345(98)00234-6

    Article  CAS  PubMed  Google Scholar 

  10. Blanchet B, Duvoux C, Costentin CE, Barrault C, Ghaleh B, Salvat A, Jouault H, Astier A, Tod M, Hulin A (2008) Pharmacokinetic-pharmacodynamic assessment of tacrolimus in liver-transplant recipients during the early post-transplantation period. Ther Drug Monit 30(4):412–418. https://doi.org/10.1097/FTD.0b013e318178e31b

    Article  CAS  PubMed  Google Scholar 

  11. Chen B, Shi HQ, Liu XX, Zhang WX, Lu JQ, Xu BM, Chen H (2017) Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in Chinese liver transplant patients. J Clin Pharm Ther 42(6):679–688. https://doi.org/10.1111/jcpt.12599

    Article  CAS  PubMed  Google Scholar 

  12. Fukudo M, Yano I, Masuda S, Goto M, Uesugi M, Katsura T, Ogura Y, Oike F, Takada Y, Egawa H, Uemoto S, Ki I (2006) Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin Pharmacol Ther 80(4):331–345. https://doi.org/10.1016/j.clpt.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  13. Li Z, Fan Q, Zhang N, Zhang C (2007) Population pharmacokinetic estimation of tacrolimus apparent clearance through multiple-linear regression. J Dalian Med Univ 29(6):535–538

    CAS  Google Scholar 

  14. Lu Y, Xu L, Cui J, Shen S, Li X (2021) Effects of postoperative day and NR1I2 on tacrolimus clearance in Chinese liver transplant recipients-a population model approach. Clin Pharmacol Drug Dev 10(11):1385–1394. https://doi.org/10.1002/cpdd.971

    Article  CAS  PubMed  Google Scholar 

  15. Lu YX, Su QH, Wu KH, Ren YP, Li L, Zhou TY, Lu W (2015) A population pharmacokinetic study of tacrolimus in healthy Chinese volunteers and liver transplant patients. Acta Pharmacol Sin 36(2):281–288. https://doi.org/10.1038/aps.2014.110

    Article  CAS  PubMed  Google Scholar 

  16. Martial LC, Biewenga M, Ruijter BN, Keizer R, Swen JJ, van Hoek B, Moes D (2021) Population pharmacokinetics and genetics of oral meltdose tacrolimus (Envarsus) in stable adult liver transplant recipients. Br J Clin Pharmacol 87(11):4262–4272. https://doi.org/10.1111/bcp.14842

    Article  CAS  PubMed  Google Scholar 

  17. Oteo I, Lukas JC, Leal N, Suarez E, Valdivieso A, Gastaca M, Ortiz de Urbina J, Calvo R (2013) Tacrolimus pharmacokinetics in the early post-liver transplantation period and clinical applicability via Bayesian prediction. Eur J Clin Pharmacol 69(1):65–74. https://doi.org/10.1007/s00228-012-1300-z

    Article  CAS  PubMed  Google Scholar 

  18. Shao J, Wang C, Fu P, Chen F, Zhang Y, Wei J (2020) Impact of donor and recipient CYP3A5*3 genotype on tacrolimus population pharmacokinetics in Chinese adult liver transplant recipients. Ann Pharmacother 54(7):652–661. https://doi.org/10.1177/1060028019897050

    Article  CAS  PubMed  Google Scholar 

  19. Staatz CE, Willis C, Taylor PJ, Lynch SV, Tett SE (2003) Toward better outcomes with tacrolimus therapy: population pharmacokinetics and individualized dosage prediction in adult liver transplantation. Liver Transpl 9(2):130–137. https://doi.org/10.1053/jlts.2003.50023

    Article  PubMed  Google Scholar 

  20. Tharanon VSA, Intaraprasong P, Sra-ium S, Sakulchairungrueng B, Gesprasert G, Arpornsujaritkun N (2021) Population pharmacokinetics of tacrolimus in Thai liver transplant patients. Thai Bull Pharm Sci 16(1):17–30

    Google Scholar 

  21. Zhang XQ, Wang ZW, Fan JW, Li YP, Jiao Z, Gao JW, Peng ZH, Liu GL (2012) The impact of sulfonylureas on tacrolimus apparent clearance revealed by a population pharmacokinetics analysis in Chinese adult liver-transplant patients. Ther Drug Monit 34(2):126–133. https://doi.org/10.1097/FTD.0b013e31824a67eb

    Article  CAS  PubMed  Google Scholar 

  22. Zhu L, Wang H, Sun X, Rao W, Qu W, Zhang Y, Sun L (2014) The population pharmacokinetic models of tacrolimus in Chinese adult liver transplantation patients. J Pharm (Cairo) 2014:713650. https://doi.org/10.1155/2014/713650

    Article  PubMed  Google Scholar 

  23. Cai X, Li R, Sheng C, Tao Y, Zhang Q, Zhang X, Li J, Shen C, Qiu X, Wang Z, Jiao Z (2020) Systematic external evaluation of published population pharmacokinetic models for tacrolimus in adult liver transplant recipients. Eur J Pharm Sci 145:105237. https://doi.org/10.1016/j.ejps.2020.105237

    Article  CAS  PubMed  Google Scholar 

  24. Cheng Y, Wang CY, Li ZR, Pan Y, Liu MB, Jiao Z (2021) Can population pharmacokinetics of antibiotics be extrapolated? Implications of external evaluations Clin Pharmacokinet 60(1):53–68. https://doi.org/10.1007/s40262-020-00937-4

    Article  CAS  PubMed  Google Scholar 

  25. Wang DD, Chen X, Fu M, Zheng QS, Xu H, Li ZP (2020) Model extrapolation to a real-world dataset: evaluation of tacrolimus population pharmacokinetics and drug interaction in pediatric liver transplantation patients. Xenobiotica 50(4):371–379. https://doi.org/10.1080/00498254.2019.1631505

    Article  CAS  PubMed  Google Scholar 

  26. Yoon JL, Cho JJ, Park KM, Noh HM, Park YS (2015) Diagnostic performance of body mass index using the Western Pacific Regional Office of World Health Organization reference standards for body fat percentage. J Korean Med Sci 30(2):162–166. https://doi.org/10.3346/jkms.2015.30.2.162

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mao JJ, Jiao Z, Yun HY, Zhao CY, Chen HC, Qiu XY, Zhong MK (2018) External evaluation of population pharmacokinetic models for ciclosporin in adult renal transplant recipients. Br J Clin Pharmacol 84(1):153–171. https://doi.org/10.1111/bcp.13431

    Article  CAS  PubMed  Google Scholar 

  28. Zahir H, McLachlan AJ, Nelson A, McCaughan G, Gleeson M, Akhlaghi F (2005) Population pharmacokinetic estimation of tacrolimus apparent clearance in adult liver transplant recipients. Ther Drug Monit 27(4):422–430. https://doi.org/10.1097/01.ftd.0000170029.36573.a0

    Article  CAS  PubMed  Google Scholar 

  29. Dansirikul C, Staatz CE, Duffull SB, Taylor PJ, Lynch SV, Tett SE (2004) Sampling times for monitoring tacrolimus in stable adult liver transplant recipients. Ther Drug Monit 26(6):593–599. https://doi.org/10.1097/00007691-200412000-00003

    Article  CAS  PubMed  Google Scholar 

  30. Kourkoumpetis T, Levitsky J (2019) Immunosuppressive drug levels in liver transplant recipients: Impact in decision making. Semin Liver Dis 39(4):414–421. https://doi.org/10.1055/s-0039-1688443

    Article  CAS  PubMed  Google Scholar 

  31. Karlsson MO, Savic RM (2007) Diagnosing model diagnostics. Clin Pharmacol Ther 82(1):17–20. https://doi.org/10.1038/sj.clpt.6100241

    Article  CAS  PubMed  Google Scholar 

  32. Mould DR, D’Haens G, Upton RN (2016) Clinical decision support tools: the evolution of a revolution. Clin Pharmacol Ther 99(4):405–418. https://doi.org/10.1002/cpt.334

    Article  CAS  PubMed  Google Scholar 

  33. Guo T, van Hest RM, Zwep LB, Roggeveen LF, Fleuren LM, Bosman RJ, van der Voort PHJ, Girbes ARJ, Mathot RAA, Elbers PWG, van Hasselt JGC (2020) Optimizing predictive performance of Bayesian forecasting for vancomycin concentration in intensive care patients. Pharm Res 37(9):171. https://doi.org/10.1007/s11095-020-02908-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abrantes JA, Jönsson S, Karlsson MO, Nielsen EI (2019) Handling interoccasion variability in model-based dose individualization using therapeutic drug monitoring data. Br J Clin Pharmacol 85(6):1326–1336. https://doi.org/10.1111/bcp.13901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cai X, Song H, Jiao Z, Yang H, Zhu M, Wang C, Wei D, Shi L, Wu B, Chen J (2020) Population pharmacokinetics and dosing regimen optimization of tacrolimus in Chinese lung transplant recipients. Eur J Pharm Sci. https://doi.org/10.1016/j.ejps.2020.105448

    Article  PubMed  Google Scholar 

  36. Cai XJ, Li RD, Li JH, Tao YF, Zhang QB, Shen CH, Zhang XF, Wang ZX, Jiao Z (2022) Prospective population pharmacokinetic study of tacrolimus in adult recipients early after liver transplantation: a comparison of Michaelis-Menten and theory-based pharmacokinetic models. Front Pharmacol 13:1031969. https://doi.org/10.3389/fphar.2022.1031969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao CY, Jiao Z, Mao JJ, Qiu XY (2016) External evaluation of published population pharmacokinetic models of tacrolimus in adult renal transplant recipients. Br J Clin Pharmacol 81(5):891–907. https://doi.org/10.1111/bcp.12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Schaik RH, van der Heiden IP, van den Anker JN, Lindemans J (2002) CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem 48(10):1668–1671

    Article  PubMed  Google Scholar 

  39. Balram C, Zhou Q, Cheung YB, Lee EJ (2003) CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol 59(2):123–126. https://doi.org/10.1007/s00228-003-0594-2

    Article  CAS  PubMed  Google Scholar 

  40. Fukuen S, Fukuda T, Maune H, Ikenaga Y, Yamamoto I, Inaba T, Azuma J (2002) Novel detection assay by PCR-RFLP and frequency of the CYP3A5 SNPs, CYP3A5*3 and *6, in a Japanese population. Pharmacogenetics 12(4):331–334. https://doi.org/10.1097/00008571-200206000-00009

    Article  CAS  PubMed  Google Scholar 

  41. Vannaprasaht S, Reungjui S, Supanya D, Sirivongs D, Pongskul C, Avihingsanon Y, Tassaneeyakul W (2013) Personalized tacrolimus doses determined by CYP3A5 Genotype for induction and maintenance phases of kidney transplantation. Clin Ther 35(11):1762–1769. https://doi.org/10.1016/j.clinthera.2013.08.019

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Virunya Komenkul, Piyawat Komolmit, and Thitima Wattanavijitkul conducted the study design. Piyawat Komolmit supported the acquisition of the external dataset. Virunya Komenkul and Waroonrat Sukarnjanaset collected and analyzed the data. All authors revised the manuscript independently.

Corresponding author

Correspondence to Thitima Wattanavijitkul.

Ethics declarations

Ethics approval and consent to participate

The study protocol was conducted according to an ethical standard and approved by the Institutional Review Board of the Faculty of Medicine of Chulalongkorn University, Bangkok (IRB No. 0382/65). This study did not involve direct patient contact as it was conducted retrospectively. All data were collected exclusively from medical records.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Virunya Komenkul is the principal investigator.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2880 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komenkul, V., Sukarnjanaset, W., Komolmit, P. et al. External validation of population pharmacokinetic models of tacrolimus in Thai adult liver transplant recipients. Eur J Clin Pharmacol (2024). https://doi.org/10.1007/s00228-024-03692-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00228-024-03692-8

Keywords

Navigation