Skip to main content
Log in

Anticoagulants in adult extracorporeal membrane oxygenation: alternatives to standardized anticoagulation with unfractionated heparin

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Extracorporeal membrane oxygenation (ECMO) is a vital technique for severe respiratory or heart failure patients. Bleeding and thrombotic events are common during ECMO and negatively impact patient outcomes. Unfractionated heparin is the primary anticoagulant, but its adverse effects limit its use, necessitating alternative anticoagulants.

Objective

Review available alternative anticoagulants for adult ECMO patients. Explore potential novel anticoagulants for future ECMO use. Aim to reduce complications (bleeding and thrombosis) and improve safety and efficacy for critically ill ECMO patients.

Methods

Comprehensive literature review of existing and emerging anticoagulants for ECMO.

Results

Identified a range of alternative anticoagulants beyond unfractionated heparin. Evaluated their potential utility in mitigating ECMO-related complications.

Conclusion

Diverse anticoagulant options are available and under investigation for ECMO. These alternatives may enhance patient safety and outcomes during ECMO support. Further research and clinical studies are warranted to determine their effectiveness and safety profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in the published studies.

References

  1. Lequier l, Annich G, Al-Ibrahim O, Bembea M, Brodie D (2014) Brogan T.ELSO Anticoagulation guidelines. Ann Arbor MI: Extracorporeal Life Support Organization

  2. Kowalewski M, Fina D, Słomka A et al (2020) COVID-19 and ECMO: the interplay between coagulation and inflammation-a narrative review. Crit Care 24(1):205. https://doi.org/10.1186/s13054-020-02925-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Supady A, Combes A, Barbaro RP et al (2022) Respiratory indications for ECMO: focus on COVID-19. Intensive Care Med 48(10):1326–1337. https://doi.org/10.1007/s00134-022-06815-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Badulak J, Antonini MV, Stead CM et al (2021) Extracorporeal membrane oxygenation for COVID-19: updated 2021 guidelines from the extracorporeal life support organization. ASAIO J 67(5):485–495. https://doi.org/10.1097/MAT.0000000000001422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mansour A, Flecher E, Schmidt M et al (2022) Bleeding and thrombotic events in patients with severe COVID-19 supported with extracorporeal membrane oxygenation: a nationwide cohort study. Intensive Care Med 48(8):1039–1052. https://doi.org/10.1007/s00134-022-06794-y

    Article  CAS  PubMed  Google Scholar 

  6. Jin Y, Zhang Y, Liu J, Zhou Z (2023) Thrombosis and bleeding in patients with COVID-19 requiring extracorporeal membrane oxygenation: a systematic review and meta-analysis. Res Pract Thromb Haemost 7(2):100103. https://doi.org/10.1016/j.rpth.2023.100103

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nunez JI, Gosling AF, O’Gara B et al (2022) Bleeding and thrombotic events in adults supported with venovenous extracorporeal membrane oxygenation: an ELSO registry analysis. Intens Care Med 48:213–224. https://doi.org/10.1007/s00134-021-06593-x

    Article  CAS  Google Scholar 

  8. Chung M, Cabezas FR, Nunez JI et al (2020) Hemocompatibility related adverse events and survival on venoarterial extracorporeal life support: an ELSO registry analysis. JACC Heart Fail 8:892–902. https://doi.org/10.1016/j.jchf.2020.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  9. Panigada M, Cucino A, Spinelli E et al (2020) A randomized controlled trial of antithrombin supplementation during extracorporeal membrane oxygenation. Crit Care Med 48(11):1636–1644. https://doi.org/10.1097/CCM.0000000000004590

    Article  CAS  PubMed  Google Scholar 

  10. Piacente C, Martucci G, Miceli V et al (2020) A narrative review of antithrombin use during veno-venous extracorporeal membrane oxygenation in adults: rationale, current use, effects on anticoagulation, and outcomes. Perfusion 35(6):452–464. https://doi.org/10.1177/0267659120913803

    Article  PubMed  Google Scholar 

  11. Bembea MM, Annich G, Rycus P, Oldenburg G, Berkowitz I, Pronovost P (2013) Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: an international survey. Pediatr Crit Care Med 14(2):e77–e84. https://doi.org/10.1097/PCC.0b013e31827127e4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rivosecchi RM, Arakelians AR, Ryan J et al (2021) Comparison of anticoagulation strategies in patients requiring venovenous extracorporeal membrane oxygenation: heparin versus bivalirudin. Crit Care Med 49(7):1129–1136. https://doi.org/10.1097/CCM.0000000000004944

    Article  CAS  PubMed  Google Scholar 

  13. Kimmoun A, Oulehri W, Sonneville R et al (2018) Prevalence and outcome of heparin-induced thrombocytopenia diagnosed under veno-arterial extracorporeal membrane oxygenation: a retrospective nationwide study. Intens Care Med 44:1460–1469. https://doi.org/10.1007/s00134-018-5346-y

    Article  CAS  Google Scholar 

  14. Singhania N, Bnsal S, Nimmatoori DP et al (2020) Current overview on hypercoagulability in COVID-19. Am J Cardiovasc Drugs 20:393–403. https://doi.org/10.1007/s40256-020-00431-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maier CL, Truong AD, Auld SC et al (2020) COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? Lancet 395:1758–1759. https://doi.org/10.1016/S0140-6736(20)31209-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fareed J, Walenga JM, Williamson K, Emanuele RM, Kumar A, Hoppensteadt DA (1985) Studies on the antithrombotic effects and pharmacokinetics of heparin fractions and fragments. Semin Thromb Hemost 11(1):56–74. https://doi.org/10.1055/s-2007-1004360

    Article  CAS  PubMed  Google Scholar 

  17. Fareed J, Hoppensteadt D, Walenga J et al (2003) Pharmacodynamic and pharmacokinetic properties of enoxaparin: implications for clinical practice. Clin Pharmacokinet 42(12):1043–1057. https://doi.org/10.2165/00003088-200342120-00003

    Article  CAS  PubMed  Google Scholar 

  18. Krueger K, Schmutz A, Zieger B, Kalbhenn J (2017) Venovenous extracorporeal membrane oxygenation with prophylactic subcutaneous anticoagulation only: an observational study in more than 60 patients. Artif Organs 41(2):186–192. https://doi.org/10.1111/aor.12737

    Article  CAS  PubMed  Google Scholar 

  19. Gratz J, Pausch A, Schaden E et al (2020) Low molecular weight heparin versus unfractioned heparin for anticoagulation during perioperative extracorporeal membrane oxygenation: a single center experience in 102 lung transplant patients. Artif Organs 44(6):638–646. https://doi.org/10.1111/aor.13642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiegele M, Laxar D, Schaden E et al (2022) Subcutaneous enoxaparin for systemic anticoagulation of COVID-19 patients during extracorporeal life support. Front Med (Lausanne) 9:879425. Published 2022 Jul 11. https://doi.org/10.3389/fmed.2022.879425

  21. Circelli A, Bissoni L, Scognamiglio G et al (2023) Anticoagulation on extracorporeal support: an alternative strategy. ASAIO J 69(3):e131. https://doi.org/10.1097/MAT.0000000000001786

    Article  PubMed  Google Scholar 

  22. Jaspers TCC, Keyany A, Maat B, Meijer K, van den Bemt PMLA, Khorsand N (2022) Therapeutically dosed low molecular weight heparins in renal impairment: a nationwide survey. Eur J Clin Pharmacol 78(9):1469–1479. https://doi.org/10.1007/s00228-022-03344-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lequier L, Annich G, Al-Ibrahim O et al (2014) ELSO anticoagulation guidelines. Ann Arbor MI:ELSO 1–17

  24. Knoderer CA, Knoderer HM, Turrentine MW, Kumar M (2006) Lepirudin anticoagulation for heparin-induced thrombocytopenia after cardiac surgery in a pediatric patient. Pharmacotherapy 26(5):709–712. https://doi.org/10.1592/phco.26.5.709

    Article  PubMed  Google Scholar 

  25. Fitzgerald D, Murphy N (1996) Argatroban: a synthetic thrombin inhibitor of low relative molecular mass. Coron Artery Dis 7(6):455–458

    Article  CAS  PubMed  Google Scholar 

  26. Marchetti M, Barelli S, Gleich T et al (2022) Managing argatroban in heparin-induced thrombocytopenia: a retrospective analysis of 729 treatment days in 32 patients with confirmed heparin-induced thrombocytopenia. Br J Haematol 197(6):766. https://doi.org/10.1111/bjh.18120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rougé A, Pelen F, Durand M et al (2017) Argatroban for an alternative anticoagulant in HIT during ECMO. J Intens Care 5(1):1–5. https://doi.org/10.1186/s40560-017-0235-y

    Article  Google Scholar 

  28. Menk M, Briem P, Weiss B et al (2017) Efficacy and safety of argatroban in patients with acute respiratory distress syndrome and extracorporeal lung support. Ann Intensive Care 7(1):82. https://doi.org/10.1186/s13613-017-0302-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Geli J, Capoccia M, Maybauer DM et al (2022) Argatroban anticoagulation for adult extracorporeal membrane oxygenation: a systematic review. J Intensive Care Med 37(4):459–471. https://doi.org/10.1177/0885066621993739

    Article  PubMed  Google Scholar 

  30. Fisser C, Winkler M, Malfertheiner MV et al (2021) Argatroban versus heparin in patients without heparin-induced thrombocytopenia during venovenous extracorporeal membrane oxygenation: a propensity-score matched study. Crit Care 25:1–10. https://doi.org/10.1186/s13054-021-03581-x

    Article  Google Scholar 

  31. Cho AE, Jerguson K, Peterson J et al (2021) Cost-effectiveness of argatroban versus heparin anticoagulation in adult extracorporeal membrane oxygenation patients. Hosp Pharm 56(4):276–281. https://doi.org/10.1177/0018578719890091

    Article  CAS  PubMed  Google Scholar 

  32. Rajsic S, Breitkopf R, Jadzic D et al (2022) Anticoagulation strategies during extracorporeal membrane oxygenation: a narrative review. J Clin Med 11(17):5147. https://doi.org/10.3390/jcm11175147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dingman JS, Smith ZR, Coba VE, Peters MA, To L (2020) Argatroban dosing requirements in extracorporeal life support and other critically ill populations. Thromb Res 189:69–76. https://doi.org/10.1016/j.thromres.2020.02.021

    Article  CAS  PubMed  Google Scholar 

  34. Gladwell TD (2002) Bivalirudin: a direct thrombin inhibitor. Clin Therap 24(1):38–58. https://doi.org/10.1016/s0149-2918(02)85004-4

    Article  CAS  Google Scholar 

  35. Kam PCA, Kaur N, Thong CL (2005) Direct thrombin inhibitors: pharmacology and clinical relevance. Anaesthesia 60(6):565–574. https://doi.org/10.1111/j.1365-2044.2005.04192.x

    Article  CAS  PubMed  Google Scholar 

  36. Caridi-Scheible M, Nichols K, Gallagher J (2021) Bivalirudin in venovenous extracorporeal membrane oxygenation: moving forward in the real world. Crit Care Med 49(7):1208–1210. https://doi.org/10.1097/CCM.0000000000004964

    Article  CAS  PubMed  Google Scholar 

  37. Koster A, Niedermeyer J, Gummert J, Renner A (2017) Low dose bivalirudin anticoagulation for lung transplantation with extracorporeal membrane oxygenation in a patient with acute heparin-induced thrombocytopenia. Eur J Cardiothorac Surg 51(5):1009–1011

    PubMed  Google Scholar 

  38. Li DH, Sun MW, Zhang JC, Zhang C, Deng L, Jiang H (2022) Is bivalirudin an alternative anticoagulant for extracorporeal membrane oxygenation (ECMO) patients? A systematic review and meta-analysis. Thromb Res 210:53–62. https://doi.org/10.1016/j.thromres.2021.12.024

    Article  CAS  PubMed  Google Scholar 

  39. Sanfilippo F, La Via L, Murabito P, Pappalardo F, Astuto M (2022) More evidence available for the use of Bivalirudin in patients supported by extracorporeal membrane oxygenation. Thromb Res 211:148–149. https://doi.org/10.1016/j.thromres.2022.02.007

    Article  CAS  PubMed  Google Scholar 

  40. Sanfilippo F, Asmussen S, Maybauer DM et al (2017) Bivalirudin for alternative anticoagulation in extracorporeal membrane oxygenation: a systematic review. J Intensive Care Med 32(5):312–319. https://doi.org/10.1177/0885066616656333

    Article  PubMed  Google Scholar 

  41. Li MJ, Shi JY, Zhang JH (2022) Bivalirudin vs. heparin in paediatric and adult patients on extracorporeal membrane oxygenation: a meta-analysis. Br J Clin Pharmacol 88(6):2605–2616. https://doi.org/10.1111/bcp.15251

    Article  CAS  PubMed  Google Scholar 

  42. Liu L, Liu F, Tan J, Zhao L (2022) Bivalirudin versus heparin in adult and pediatric patients with extracorporeal membrane oxygenation therapy: a systematic review and meta-analysis. Pharmacol Res 177:106089. https://doi.org/10.1016/j.phrs.2022.106089

    Article  CAS  PubMed  Google Scholar 

  43. Ma M, Liang S, Zhu J et al (2022) The efficacy and safety of bivalirudin versus heparin in the anticoagulation therapy of extracorporeal membrane oxygenation: a systematic review and meta-analysis. Front Pharmacol 13:771563. Published 2022 Apr 14. https://doi.org/10.3389/fphar.2022.771563

  44. Wieruszewski PM, Macielak SA, Nei SD et al (2023) Heparin versus bivalirudin for anticoagulation in adult extracorporeal membrane oxygenation: a systematic review and meta-analysis. ASAIO J 69(2):137–144. https://doi.org/10.1097/MAT.0000000000001808

    Article  CAS  PubMed  Google Scholar 

  45. M’Pembele R, Roth S, Metzger A et al (2022) Evaluation of clinical outcomes in patients treated with heparin or direct thrombin inhibitors during extracorporeal membrane oxygenation: a systematic review and meta-analysis. Thromb J 20(1):42. Published 2022 Jul 28. https://doi.org/10.1186/s12959-022-00401-2

  46. Gu J, Yu H, Lin D (2023) Superiority of bivalirudin over heparin anticoagulation therapy for extracorporeal membrane oxygenation? Too early to draw conclusions. Heliyon 9(2). https://doi.org/10.1016/j.heliyon.2023.e13530

  47. Burstein B, Wieruszewski PM, Zhao YJ, Smischney N (2019) Anticoagulation with direct thrombin inhibitors during extracorporeal membrane oxygenation. World J Crit Care Med 8:87–98. https://doi.org/10.5492/wjccm.v8.i6.87

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zheng W, Dai X, Xu B, Tian W, Shi J (2023) Discovery and development of Factor Xa inhibitors (2015–2022). Front Pharmacol 14:1105880. Published 2023 Feb 21. https://doi.org/10.3389/fphar.2023.1105880

  49. Wilde MI, Markham A (1997) Danaparoid: A review of its pharmacology and clinical use in the management of heparin-induced thrombocytopenia. Drugs 54:903–924. https://doi.org/10.2165/00003495-199754060-00008

    Article  CAS  PubMed  Google Scholar 

  50. Phan XT, Nguyen TH, Tran TT et al (2020) Suspected heparin-induced thrombocytopenia in a COVID-19 patient on extracorporeal membrane oxygenation support: a case report. Thromb J 18(1):1–5. https://doi.org/10.1186/s12959-020-00252-9

    Article  CAS  Google Scholar 

  51. Parlar AI, Sayar U, Cevirme D, Yuruk MA, Mataraci I (2014) Successful use of fondaparinux in a patient with heparin-induced thrombocytopenia while on extracorporeal membrane oxygenation after mitral valve redo surgery. Int J Artif Organs 37(4):344–347. https://doi.org/10.5301/ijao.5000302

    Article  PubMed  Google Scholar 

  52. Lu GY, Xu H, Li JH, Chen JK, Ning YG (2023) Safety and outcome of early enteral nutrition in patients receiving extracorporeal membrane oxygenation. Clin Nutr 42(9):1711–1714. https://doi.org/10.1016/j.clnu.2023.07.021

    Article  PubMed  Google Scholar 

  53. Davis RC 2nd, Durham LA 3rd, Kiraly L, Patel JJ (2021) Safety, tolerability, and outcomes of enteral nutrition in extracorporeal membrane oxygenation. Nutr Clin Pract 36(1):98–104. https://doi.org/10.1002/ncp.10591SundaramS,GikakisN,HackCE,etal

    Article  PubMed  Google Scholar 

  54. Milling TJ Jr, Middeldorp S, Xu L et al (2023) Final study report of Andexanet Alfa for major bleeding with factor Xa inhibitors. Circulation 147(13):1026–1038. https://doi.org/10.1161/CIRCULATIONAHA.121.057844

    Article  CAS  PubMed  Google Scholar 

  55. Rogers KC, Finks SW (2019) A new option for reversing the anticoagulant effect of factor Xa inhibitors: Andexanet Alfa (ANDEXXA). Am J Med 132(1):38–41. https://doi.org/10.1016/j.amjmed.2018.06.028

    Article  CAS  PubMed  Google Scholar 

  56. Sundaram S, Gikakis N, Hack CE et al (1996) Nafamostat mesilate, a broad spectrum protease inhibitor, modulates platelet, neutrophil and contact activation in simulated extracorporeal circulation. Thromb Haemost 75:76–82

    Article  CAS  PubMed  Google Scholar 

  57. Sanfilippo F, CurròJ M, La Via L et al (2022) Use of nafamostat mesilate for anticoagulation during extracorporeal membrane oxygenation: a systematic review. Artif Organs 46(12):2371–2381. https://doi.org/10.1111/aor.14276

    Article  PubMed  Google Scholar 

  58. Han SJ, Kim HS, Kim KI et al (2011) Use of nafamostat mesilate as an anticoagulant during extracorporeal membrane oxygenation. J Korean Med Sci 26(7):945–950. https://doi.org/10.3346/jkms.2011.26.7.945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lang Y, Zheng Y, Qi B et al (2022) Anticoagulation with nafamostat mesilate during extracorporeal life support. Int J Cardiol. https://doi.org/10.1016/j.ijcard.2022.07.022

    Article  PubMed  Google Scholar 

  60. Han SJ, Han W, Song HJ et al (2018) Validation of nafamostat mesilate as an anticoagulant in extracorporeal membrane oxygenation: a large-animal experiment. Korean J Thorac Cardiovasc Surg 51:114–121. https://doi.org/10.5090/kjtcs.2018.51.2.114

    Article  PubMed  PubMed Central  Google Scholar 

  61. Han W, San Bok J, Cho HJ et al (2019) Single-center experience of extracorporeal membrane oxygenation mainly anticoagulated with nafamostat mesilate. J Thorac Dis 11:2861–2867. https://doi.org/10.21037/jtd.2019.06.30

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lim JY, Kim JB, Choo SJ, Chung CH, Lee JW, Jung SH (2016) Anticoagulation during extracorporeal membrane oxygenation; nafamostat mesilate versus heparin. Ann Thorac Surg 102(2):534–539. https://doi.org/10.1016/j.athoracsur.2016.01.044

    Article  PubMed  Google Scholar 

  63. Lee JH, Park JH, Jang JH et al (2022) The role of nafamostat mesilate as a regional anticoagulant during extracorporeal membrane oxygenation. Acute Crit Care 37(2):177–184. https://doi.org/10.4266/acc.2021.01312

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lang Y, Zheng Y, Qi B et al (2022) Anticoagulation with nafamostat mesilate during extracorporeal life support. Intern J Cardiol. https://doi.org/10.1016/j.ijcard.2022.07.022

    Article  Google Scholar 

  65. Hernández-Mitre MP, Tong SYC, Denholm JT et al (2022) Nafamostat mesylate for treatment of COVID-19 in hospitalised patients: a structured, narrative review. Clin Pharmacokinet 61(10):1331–1343. https://doi.org/10.1007/s40262-022-01170-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Clark JA, Schulman G, Golper TA (2008) Safety and efficacy of regional citrate anticoagulation during 8-hour sustained low-efficiency dialysis. Clin J Am Soc Nephrol 3(3):736–742. https://doi.org/10.2215/CJN.03460807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shum HP, Kwan AMC, Chan KC et al (2014) The use of regional citrate anticoagulation continuous venovenous hemofiltration in extracorporeal membrane oxygenation. ASAIO J 60(4):413–418. https://doi.org/10.1097/MAT.0000000000000085

    Article  CAS  PubMed  Google Scholar 

  68. Giani M, Scaravilli V, Stefanini F et al (2020) Continuous renal replacement therapy in venovenous extracorporeal membrane oxygenation: a retrospective study on regional citrate anticoagulation. ASAIO J 66:332–338. https://doi.org/10.1097/MAT.0000000000001003

    Article  PubMed  Google Scholar 

  69. Tiranathanagul K, Jearnsujitwimol O, Susantitaphong P et al (2011) Regional citrate anticoagulation reduces polymorphonuclear cell degranulation in critically ill patients treated with continuous venovenous hemofiltration. Ther Apher Dial 15:556–564. https://doi.org/10.1111/j.1744-9987.2011.00996.x

    Article  CAS  PubMed  Google Scholar 

  70. Akers WS, Oh JJ, Oestreich JH et al (2010) Pharmacokinetics and pharmacodynamics of a bolus and infusion of cangrelor: a direct, parenteral P2Y12 receptor antagonist. J Clin Pharmacol 50:27–35. https://doi.org/10.1177/0091270009344986

    Article  CAS  PubMed  Google Scholar 

  71. De Luca L, Steg PG, Bhatt DL et al (2021) Cangrelor: clinical data, contemporary use, and future perspectives. J Am Heart Assoc 10:e022125. https://doi.org/10.1161/JAHA.121.022125

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vaduganathan M, Qamar A, Badreldin HA et al (2017) Cangrelor use in cardiogenic shock: a single-center real-world experience. JACC Cardiovasc Interv 10(16):1712–1714. https://doi.org/10.1016/j.jcin.2017.07.009

    Article  PubMed  Google Scholar 

  73. Ciolek AM, Ma KL, Garan AR et al (2020) Use of cangrelor during venoarterial extracorporeal membrane oxygenation following percutaneous coronary intervention. Artif Organs 44:339–340. https://doi.org/10.1111/aor.13563

    Article  PubMed  Google Scholar 

  74. Katz A, Lewis TC, Arnouk S et al (2021) Clinical use of cangrelor after percutaneous coronary intervention in patients requiring mechanical circulatory support. Ann Pharmacother 55(10):1215–1222. https://doi.org/10.1177/1060028021994621

    Article  PubMed  Google Scholar 

  75. Baldetti L, Nardelli P, Ajello S et al (2022) Antithrombotic therapy with cangrelor and bivalirudin in venoarterial extracorporeal membrane oxygenation patients undergoing percutaneous coronary intervention: a single-center experience [published online ahead of print, 2022 Dec 12]. ASAIO J. https://doi.org/10.1097/MAT.0000000000001871

  76. Patel JS, Kooda K, Igneri LA (2022) A narrative review of the impact of extracorporeal membrane oxygenation on the pharmacokinetics and pharmacodynamics of critical care therapies [published online ahead of print,2022 Oct 15]. Ann Pharmacother 10600280221126438. https://doi.org/10.1177/10600280221126438

  77. Kreutz RP, Nystrom P, Kreutz Y et al (2013) Inhibition of platelet aggregation by prostaglandin E1 (PGE1) in diabetic patients during therapy with clopidogrel and aspirin. Platelets 24(2):145–150. https://doi.org/10.3109/09537104.2012.661107

    Article  CAS  PubMed  Google Scholar 

  78. Hulshof AM, Vries M, Verhezen P et al (2021) The influence of prostaglandin E1 and use of inhibitor percentage on the correlation between the multiplate and verify now in patients on dual antiplatelet therapy. Platelets 32(4):463–468. https://doi.org/10.1080/09537104.2020.1754378

    Article  CAS  PubMed  Google Scholar 

  79. Goerge T, Ho-Tin-Noe B, Carbo C et al (2008) Inflammation induces hemorrhage in thrombocytopenia. Blood 111:4958–4964. https://doi.org/10.1182/blood-2007-11-123620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Buchtele N, Schörgenhofer C, Schwameis M et al (2022) Add-on prostaglandin E1 in venovenous extracorporeal membrane oxygenation: a randomized, double-blind, placebo-controlled pilot trial. Am J Respir Crit Care Med 206(2):170–177. https://doi.org/10.1164/rccm.202110-2359OC

    Article  CAS  PubMed  Google Scholar 

  81. Kenne E, Nickel KF, Long AT et al (2015) Factor XII: a novel target for safe prevention of thrombosis and inflammation. J Intern Med 278(6):571–585. https://doi.org/10.1111/joim.12430

    Article  CAS  PubMed  Google Scholar 

  82. Kenne E, Renné T (2014) Factor XII: a drug target for safe interference with thrombosis and inflammation. Drug Discov Today 19(9):1459–1464. https://doi.org/10.1016/j.drudis.2014.06.024

    Article  CAS  PubMed  Google Scholar 

  83. Larsson M, Rayzman V, Nolte MW et al (2014) A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med 6(222):222ra17. https://doi.org/10.1126/scitranslmed.3006804

    Article  CAS  PubMed  Google Scholar 

  84. Beck S, Stegner D, Loroch S et al (2021) Generation of a humanized FXII knock-in mouse—a powerful model system to test novel antithrombotic agents. J Thromb Haemost 19(11):2835–2840. https://doi.org/10.1111/jth.15488

    Article  CAS  PubMed  Google Scholar 

  85. Kluge KE, Seljeflot I, Arnesen H, Jensen T, Halvorsen S, Helseth R (2022) Coagulation factors XI and XII as possible targets for anticoagulant therapy. Thromb Res 214:53–62. https://doi.org/10.1016/j.thromres.2022.04.013

    Article  CAS  PubMed  Google Scholar 

  86. Poenou G, Dumitru Dumitru T, Lafaie L, Mismetti V, Heestermans M, Bertoletti L (2022) Factor XI inhibition for the prevention of venous thromboembolism: an update on current evidence and future perspectives. Vasc Health Risk Manag 18:359–373. https://doi.org/10.2147/VHRM.S331614

    Article  PubMed  PubMed Central  Google Scholar 

  87. Koch AW, Schiering N, Melkko S et al (2019) MAA868, a novel FXI antibody with a unique binding mode, shows durable effects on markers of anticoagulation in humans. Blood 133(13):1507–1516. https://doi.org/10.1182/blood-2018-10-880849

    Article  CAS  PubMed  Google Scholar 

  88. Yi BA, Freedholm D, Widener N et al (2022) Pharmacokinetics and pharmacodynamics of Abelacimab (MAA868), a novel dual inhibitor of Factor XI and Factor XIa. J Thromb Haemost 20(2):307–315. https://doi.org/10.1111/jth.15577

    Article  CAS  PubMed  Google Scholar 

  89. Perera V, Wang Z, Luettgen J et al (2022) First-in-human study of milvexian, an oral, direct, small molecule factor XIa inhibitor. Clin Transl Sci. 15(2):330–342. https://doi.org/10.1111/cts.13148. (published correction appears in Clin Transl Sci. 2022 Apr;15(4):1085)

    Article  CAS  PubMed  Google Scholar 

  90. Lorentz CU, Tucker EI, Verbout NG et al (2021) The contact activation inhibitor AB023 in heparin-free hemodialysis: results of a randomized phase 2 clinical trial. Blood 138(22):2173–2184. https://doi.org/10.1182/blood.2021011725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Greco A, Laudani C, Spagnolo M et al (2023) Pharmacology and clinical development of factor XI inhibitors. Circulation 147(11):897–913. https://doi.org/10.1161/CIRCULATIONAHA.122.062353

    Article  CAS  PubMed  Google Scholar 

  92. Jiang S, Jia Z, Zheng Y et al (2022) Bifunctional fusion protein targeting both FXIIa and FXIa displays potent anticoagulation effects. Life Sci 309:121021. https://doi.org/10.1016/j.lfs.2022.121021

    Article  CAS  PubMed  Google Scholar 

  93. Afosah DK, Ofori E, Mottamal M et al (2022) Factor IX(a) inhibitors: an updated patent review (2003-present). Expert Opin Ther Pat 32(4):381–400. https://doi.org/10.1080/13543776.2022.2026926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Olson SR, Murphree CR, Zonies D et al (2021) Thrombosis and bleeding in extracorporeal membrane oxygenation (ECMO) without anticoagulation: a systematic review. ASAIO J 67(3):290–296. https://doi.org/10.1097/MAT.0000000000001230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors are grateful to our institution for purchasing some quality journal literature that we can access for free and learn a lot from.

Author information

Authors and Affiliations

Authors

Contributions

XLQ and LH conducted the literature search and source document search and wrote the paper. WZS was responsible for reviewing the data and drawing the figures for this article. TS was responsible for the design and full text review of this study; WQ was responsible for the full text review. XLQ and TS were responsible for revising the manuscript, and all authors read and approved the final version. XLQ and LH were responsible for downloading and processing the data in this paper and writing the paper. WZS was responsible for reviewing the data in this paper and drawing the graphs and tables. TS was responsible for the design of this study and reviewing the full text; WQ was responsible for reviewing the full text. All authors read and approved the final version.

Corresponding author

Correspondence to Shu Tang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Xu, L., Li, H. et al. Anticoagulants in adult extracorporeal membrane oxygenation: alternatives to standardized anticoagulation with unfractionated heparin. Eur J Clin Pharmacol 79, 1583–1594 (2023). https://doi.org/10.1007/s00228-023-03568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-023-03568-3

Keywords

Navigation