Skip to main content

Advertisement

Log in

Personalizing atomoxetine dosing in children with ADHD: what can we learn from current supporting evidence

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

There is marked heterogeneity in treatment response of atomoxetine in patients with attention deficit/hyperactivity disorder (ADHD), especially for the pediatric population. This review aims to evaluate current evidence to characterize the dose-exposure relationship, establish clinically relevant metrics for systemic exposure to atomoxetine, define a therapeutic exposure range, and to provide a dose-adaptation strategy before implementing personalized dosing for atomoxetine in children with ADHD.

Methods

A comprehensive search was performed across electronic databases (PubMed and Embase) covering the period of January 1, 1985 to July 10, 2022, to summarize recent advances in the pharmacokinetics, pharmacogenomics/pharmacogenetics (PGx), therapeutic drug monitoring (TDM), physiologically based pharmacokinetics (PBPK), and population pharmacokinetics (PPK) of atomoxetine in children with ADHD.

Results

Some factors affecting the pharmacokinetics of atomoxetine were summarized, including food, CYP2D6 and CYP2C19 phenotypes, and drug‒drug interactions (DDIs). The association between treatment response and genetic polymorphisms of genes encoding pharmacological targets, such as norepinephrine transporter (NET/SLC6A2) and dopamine β hydroxylase (DBH), was also discussed. Based on well-developed and validated assays for monitoring plasma concentrations of atomoxetine, the therapeutic reference range in pediatric patients with ADHD proposed by several studies was summarized. However, supporting evidence on the relationship between systemic atomoxetine exposure levels and clinical response was far from sufficient.

Conclusion

Personalizing atomoxetine dosage may be even more complex than anticipated thus far, but elucidating the best way to tailor the non-stimulant to a patient’s individual need will be achieved by combining two strategies: detailed research in linking the pharmacokinetics and pharmacodynamics in pediatric patients, and better understanding in nature and causes of ADHD, as well as environmental stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing is not applicable.

Abbreviations

ADHD:

Attention deficit/hyperactivity disorder

AGNP:

Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie

AS:

Activity score

AUC:

Area under the time curve

CD:

Conduct disorder

CL/F:

Apparent oral clearance

C max :

Peak concentration

CPIC:

Clinical Pharmacogenetic Implementation Consortium

CYP2D6:

Cytochrome P450 2D6

DA:

Dopamine

DBH:

Dopamine β hydroxylase

DDIs:

Drug–drug interactions

DPWG:

Dutch Pharmacogenetics Working Group

EM:

Extensive metabolizer

EMs:

Extensive metabolizers

HLMs:

Human liver microsomes

IM:

Intermediate metabolizer

LD:

Linkage imbalance

NAD:

Naive average data approach

NDA:

N‐desmethylatomoxetine

NE:

Norepinephrine

N-desmethyl-4-OH-atomoxetine:

N-desmethyl-4-hydroxyatomoxetine

NET:

Norepinephrine transporter

NET/SLC6A2:

Norepinephrine transporter

NONMEM:

Nonlinear mixed-effects modeling approach

NPD:

Naive pooled data analysis

ODD:

Oppositional defiant disorder

PBPK:

Physiologically based pharmacokinetics

PFC:

Prefrontal cortex

PGx:

Pharmacogenomics

PM:

Poor metabolizers

PMs:

Poor metabolizers

PPK:

Population pharmacokinetics

TDM:

Therapeutic drug monitoring

T max :

Time to maximum plasma concentration

t 1/2 :

Half-life

UM:

Ultrarapid metabolizer

2-CH2OH-atomoxetine:

2‐Hydroxymethylatomoxetine

4-OH-atomoxetine:

4-Hydroxyatomoxetine

4-OH-atomoxetine-O-glucuronide:

4-Hydroxyatomoxetine-O-glucuronide

References

  1. Thomas R, Sanders S, Doust J, Beller E, Glasziou P (2015) Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics 135(4):e994-1001

    Article  PubMed  Google Scholar 

  2. Pozzi M, Carnovale C, Peeters G, Gentili M, Antoniazzi S, Radice S et al (2018) Adverse drug events related to mood and emotion in paediatric patients treated for ADHD: a meta-analysis. J Affect Disord 238:161–178

    Article  PubMed  Google Scholar 

  3. Clemow D, Bushe C, Mancini M, Ossipov M, Upadhyaya H (2017) A review of the efficacy of atomoxetine in the treatment of attention-deficit hyperactivity disorder in children and adult patients with common comorbidities. Neuropsychiatr Dis Treat 13:357–371

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wolraich M, Hagan J, Allan C, Chan E, Davison D, Earls M et al (2019) Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 144(4):e20192528

  5. Dalsgaard S, Leckman J, Mortensen P, Nielsen H, Simonsen M (2015) Effect of drugs on the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort study. Lancet Psychiatry 2(8):702–709

    Article  PubMed  Google Scholar 

  6. Pearson D, Santos C, Aman M, Arnold L, Casat C, Mansour R et al (2013) Effects of extended release methylphenidate treatment on ratings of attention-deficit/hyperactivity disorder (ADHD) and associated behavior in children with autism spectrum disorders and ADHD symptoms. J Child Adolesc Psychopharmacol 23(5):337–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barner J, Khoza S, Oladapo A (2011) ADHD medication use, adherence, persistence and cost among Texas Medicaid children. Curr Med Res Opin 27 Suppl 2:13–22

  8. Mechler K, Banaschewski T, Hohmann S, Häge A (2021) Evidence-based pharmacological treatment options for ADHD in children and adolescents. Pharmacol Ther 230:107940

    Article  PubMed  Google Scholar 

  9. Elsayed N, Yamamoto K, Froehlich T (2020) Genetic influence on efficacy of pharmacotherapy for pediatric attention-deficit/hyperactivity disorder: overview and current status of research. CNS Drugs 34(4):389–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mamiya P, Arnett A, Stein M (2021) Precision medicine care in ADHD: the case for neural excitation and inhibition. Brain Sci 11(1):91

  11. Shaker N, Osama Y, Barakat D, Abdelgawad A, Abdel Aziz K, Aly E-G (2021) Atomoxetine in attention-deficit/hyperactivity disorder in children with and without comorbid mood disorders. J Child Adolesc Psychopharmacol 31(5):332–341

    Article  CAS  PubMed  Google Scholar 

  12. Hutchison S, Ghuman J, Ghuman H, Karpov I, Schuster J (2016) Efficacy of atomoxetine in the treatment of attention-deficit hyperactivity disorder in patients with common comorbidities in children, adolescents and adults: a review. Thera Adv Psychopharmacol 6(5):317–334

    Article  CAS  Google Scholar 

  13. Cutler A, Mattingly G, Jain R, O’Neal W (2022) Current and future nonstimulants in the treatment of pediatric ADHD: monoamine reuptake inhibitors, receptor modulators, and multimodal agents. CNS Spectr 27(2):199–207

    Article  PubMed  Google Scholar 

  14. Brown J, Abdel-Rahman S, van Haandel L, Gaedigk A, Lin Y, Leeder J (2016) Single dose, CYP2D6 genotype-stratified pharmacokinetic study of atomoxetine in children with ADHD. Clin Pharmacol Ther 99(6):642–650

    Article  CAS  PubMed  Google Scholar 

  15. Bolea-Alamañac B, Nutt D, Adamou M, Asherson P, Bazire S, Coghill D et al (2014) Evidence-based guidelines for the pharmacological management of attention deficit hyperactivity disorder: update on recommendations from the British Association for Psychopharmacology. J Psychopharmacol (Oxford, England) 28(3):179–203

    Article  Google Scholar 

  16. Tsujii N, Usami M, Naya N, Tsuji T, Mishima H, Horie J et al (2021) Efficacy and safety of medication for attention-deficit hyperactivity disorder in children and adolescents with common comorbidities: a systematic review. Neurol Ther 10(2):499–522

    Article  PubMed  PubMed Central  Google Scholar 

  17. Childress AC (2016) A critical appraisal of atomoxetine in the management of ADHD. Ther Clin Risk Manag 12:27–39

    PubMed  Google Scholar 

  18. Pliszka S (2007) Practice parameter for the assessment and treatment of children and adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 46(7):894–921

    Article  PubMed  Google Scholar 

  19. Schwartz S, Correll C (2014) Efficacy and safety of atomoxetine in children and adolescents with attention-deficit/hyperactivity disorder: results from a comprehensive meta-analysis and metaregression. J Am Acad Child Adolesc Psychiatry 53(2):174–187

    Article  PubMed  Google Scholar 

  20. Newcorn J, Sutton V, Weiss M, Sumner C (2009) Clinical responses to atomoxetine in attention-deficit/hyperactivity disorder: the Integrated Data Exploratory Analysis (IDEA) study. J Am Acad Child Adolesc Psychiatry 48(5):511–518

    Article  PubMed  Google Scholar 

  21. Sugimoto A, Suzuki Y, Orime N, Hayashi T, Yoshinaga K, Egawa J et al (2021) The lowest effective plasma concentration of atomoxetine in pediatric patients with attention deficit/hyperactivity disorder: a non-randomized prospective interventional study. Medicine 100(27):e26552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Treuer T, Méndez L, Montgomery W, Wu S (2016) Factors affecting treatment adherence to atomoxetine in ADHD: a systematic review. Neuropsychiatr Dis Treat 12:1061–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hiemke C, Bergemann N, Clement H, Conca A, Deckert J, Domschke K et al (2018) Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry 51(1–02):9–62

    CAS  PubMed  Google Scholar 

  24. Ruppert K, Geffert C, Clement H, Bachmann C, Haberhausen M, Schulz E et al (2022) Therapeutic drug monitoring of atomoxetine in children and adolescents with attention-deficit/ hyperactivity disorder: a naturalistic study. J Neural Transm 129(7):945–959

    Article  CAS  PubMed  Google Scholar 

  25. ter Laak M, Temmink A, Koeken A, van’t Veer N, van Hattum P, Cobbaert C (2010) Recognition of impaired atomoxetine metabolism because of low CYP2D6 activity. Pediatr Neurol 43(3):159–162

    Article  PubMed  Google Scholar 

  26. Bengtsson F (2004) Therapeutic drug monitoring of psychotropic drugs. TDM “nouveau.” Ther Drug Monit 26(2):145–151

    Article  PubMed  Google Scholar 

  27. Hiemke C (2008) Therapeutic drug monitoring in neuropsychopharmacology: does it hold its promises? Eur Arch Psychiatry Clin Neurosci 21–27

  28. Jaquenoud Sirot E, van der Velden J, Rentsch K, Eap C, Baumann P (2006) Therapeutic drug monitoring and pharmacogenetic tests as tools in pharmacovigilance. Drug Saf 29(9):735–768

    Article  PubMed  Google Scholar 

  29. Jang S, Yan Z, Lazor J (2016) Therapeutic drug monitoring: a patient management tool for precision medicine. Clin Pharmacol Ther 99(2):148–150

    Article  CAS  PubMed  Google Scholar 

  30. Crews K, Hicks J, Pui C, Relling M, Evans W (2012) Pharmacogenomics and individualized medicine: translating science into practice. Clin Pharmacol Ther 92(4):467–475

    CAS  PubMed  Google Scholar 

  31. Brown JT, Bishop JR, Sangkuhl K, Nurmi EL, Mueller DJ, Dinh JC et al (2019) Clinical pharmacogenetics implementation consortium guideline for cytochrome P450 (CYP)2D6 genotype and atomoxetine therapy. Clin Pharmacol Ther 106(1):94–102

    Article  PubMed  Google Scholar 

  32. Jung E, Lee Y, Kim D, Kang P, Lim C, Cho C et al (2020) Effects of paroxetine on the pharmacokinetics of atomoxetine and its metabolites in different CYP2D6 genotypes. Arch Pharmacal Res 43(12):1356–1363

    Article  CAS  Google Scholar 

  33. Sauer J, Ring B, Witcher J (2005) Clinical pharmacokinetics of atomoxetine. Clin Pharmacokinet 44(6):571–590

    Article  CAS  PubMed  Google Scholar 

  34. Yu G, Li G, Markowitz J (2016) Atomoxetine: a review of its pharmacokinetics and pharmacogenomics relative to drug disposition. J Child Adolesc Psychopharmacol 26(4):314–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Papaseit E, Marchei E, Farré M, Garcia-Algar O, Pacifici R, Pichini S (2013) Concentrations of atomoxetine and its metabolites in plasma and oral fluid from paediatric patients with attention deficit/hyperactivity disorder. Drug Test Anal 5(6):446–452

    Article  CAS  PubMed  Google Scholar 

  36. Witcher J, Long A, Smith B, Sauer J, Heilgenstein J, Wilens T et al (2003) Atomoxetine pharmacokinetics in children and adolescents with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 13(1):53–63

    Article  PubMed  Google Scholar 

  37. Caballero J, Nahata M (2003) Atomoxetine hydrochloride for the treatment of attention-deficit/hyperactivity disorder. Clin Ther 25(12):3065–3083

    Article  CAS  PubMed  Google Scholar 

  38. Sauer J, Ponsler G, Mattiuz E, Long A, Witcher J, Thomasson H et al (2003) Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 31(1):98–107

    Article  CAS  PubMed  Google Scholar 

  39. Christman A, Fermo J, Markowitz J (2004) Atomoxetine, a novel treatment for attention-deficit-hyperactivity disorder. Pharmacotherapy 24(8):1020–1036

    Article  CAS  PubMed  Google Scholar 

  40. Michelson D, Read H, Ruff D, Witcher J, Zhang S, McCracken J (2007) CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 46(2):242–251

    Article  PubMed  Google Scholar 

  41. Loghin C, Haber H, Beasley C, Kothare P, Kauffman L, April J et al (2013) Effects of atomoxetine on the QT interval in healthy CYP2D6 poor metabolizers. Br J Clin Pharmacol 75(2):538–549

    Article  CAS  PubMed  Google Scholar 

  42. Ramsey L, Brown J, Vear S, Bishop J, Van Driest S (2020) Gene-based dose optimization in children. Annu Rev Pharmacol Toxicol 60:311–331

    Article  CAS  PubMed  Google Scholar 

  43. Ring B, Gillespie J, Eckstein J, Wrighton S (2002) Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 30(3):319–323

    Article  CAS  PubMed  Google Scholar 

  44. Trzepacz P, Williams D, Feldman P, Wrishko R, Witcher J, Buitelaar J (2008) CYP2D6 metabolizer status and atomoxetine dosing in children and adolescents with ADHD. Eur Neuropsychopharmacol 18(2):79–86

    Article  CAS  PubMed  Google Scholar 

  45. Dinh J, Pearce R, Van Haandel L, Gaedigk A, Leeder J (2016) Characterization of atomoxetine biotransformation and implications for development of PBPK models for dose individualization in children. Drug Metab Dispos 44(7):1070–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Protti M, Mandrioli R, Marasca C, Cavalli A, Serretti A, Mercolini L (2020) New-generation, non-SSRI antidepressants: drug-drug interactions and therapeutic drug monitoring. Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others. Med Res Rev 40(5):1794–1832

    Article  CAS  PubMed  Google Scholar 

  47. Kim S, Byeon J, Kim Y, Lee C, Lee Y, Jang C et al (2018) Physiologically based pharmacokinetic modelling of atomoxetine with regard to CYP2D6 genotypes. Sci Rep 8(1):12405

    Article  PubMed  PubMed Central  Google Scholar 

  48. You Y, Wang X, Ma K, Li J, Peng Y, Zheng J (2021) Metabolic activation of atomoxetine mediated by cytochrome P450 2D6. Chem Res Toxicol

  49. Mattiuz E, Ponsler G, Barbuch R, Wood P, Mullen J, Shugert R et al (2003) Disposition and metabolic fate of atomoxetine hydrochloride: pharmacokinetics, metabolism, and excretion in the Fischer 344 rat and beagle dog. Drug Metab Dispos 31(1):88–97

    Article  CAS  PubMed  Google Scholar 

  50. Spiller H, Hays H, Aleguas A (2013) Overdose of drugs for attention-deficit hyperactivity disorder: clinical presentation, mechanisms of toxicity, and management. CNS Drugs 27(7):531–543

    Article  CAS  PubMed  Google Scholar 

  51. Corponi F, Fabbri C, Serretti A (2019) Pharmacogenetics and depression: a critical perspective. Psychiatry Investig 16(9):645–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gaedigk A, Jaime L, Bertino J, Bérard A, Pratt V, Bradfordand L et al (2010) Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants. Front Pharmacol 1:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alali M, Ismail Al-Khalil W, Rijjal S, Al-Salhi L, Saifo M, Youssef L (2022) Frequencies of CYP2D6 genetic polymorphisms in Arab populations. Hum Genomics 16(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Crews K, Gaedigk A, Dunnenberger H, Leeder J, Klein T, Caudle K et al (2014) Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 95(4):376–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaedigk A, Simon S, Pearce R, Bradford L, Kennedy M, Leeder J (2008) The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 83(2):234–242

    Article  CAS  PubMed  Google Scholar 

  56. Caudle K, Sangkuhl K, Whirl-Carrillo M, Swen J, Haidar C, Klein T et al (2020) Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and dutch pharmacogenetics working group. Clin Transl Sci 13(1):116–124

    Article  PubMed  Google Scholar 

  57. Dorji P, Tshering G, Na-Bangchang K (2019) CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South-East and East Asian populations: a systematic review. J Clin Pharm Ther 44(4):508–524

    CAS  PubMed  Google Scholar 

  58. Swen J, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee A, Mulder H et al (2011) Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther 89(5):662–673

    Article  CAS  PubMed  Google Scholar 

  59. Bradford L (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3(2):229–243

    Article  CAS  PubMed  Google Scholar 

  60. Gaedigk A (2013) Complexities of CYP2D6 gene analysis and interpretation. Int Rev Psychiatry (Abingdon, England) 25(5):534–553

    Article  Google Scholar 

  61. Brown J, Bishop J (2015) Atomoxetine pharmacogenetics: associations with pharmacokinetics, treatment response and tolerability. Pharmacogenomics 16(13):1513–1520

    Article  CAS  PubMed  Google Scholar 

  62. Lan B, Ma F, Zhai X, Li Q, Chen S, Wang J et al (2018) The relationship between the CYP2D6 polymorphisms and tamoxifen efficacy in adjuvant endocrine therapy of breast cancer patients in Chinese Han population. Int J Cancer 143(1):184–189

    Article  CAS  PubMed  Google Scholar 

  63. Byeon J, Kim Y, Lee C, Kim S, Chae W, Jung E et al (2018) CYP2D6 allele frequencies in Korean population, comparison with East Asian, Caucasian and African populations, and the comparison of metabolic activity of CYP2D6 genotypes. Arch Pharmacal Res 41(9):921–930

    Article  CAS  Google Scholar 

  64. Mbavha B, Kanji C, Stadler N, Stingl J, Stanglmair A, Scholl C et al (2022) Population genetic polymorphisms of pharmacogenes in Zimbabwe, a potential guide for the safe and efficacious use of medicines in people of African ancestry. Pharmacogenet Genomics 32(5):173–182

    Article  CAS  PubMed  Google Scholar 

  65. Furman K, Grimm D, Mueller T, Holley-Shanks R, Bertz R, Williams L et al (2004) Impact of CYP2D6 intermediate metabolizer alleles on single-dose desipramine pharmacokinetics. Pharmacogenetics 14(5):279–284

    Article  CAS  PubMed  Google Scholar 

  66. LLerena A, Naranjo M, Rodrigues-Soares F, Penas-LLedó E, Fariñas H, Tarazona-Santos E (2014) Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin Drug Metab Toxicol 10(11):1569–1583

    Article  CAS  PubMed  Google Scholar 

  67. Zhou W, Jiang Y, Xu Y, Wang Y, Ma X, Zhou L et al (2022) Comparison of adverse drug reactions between tamoxifen and toremifene in breast cancer patients with different CYP2D6 genotypes: a propensity-score matched cohort study. Int J Cancer 150(10):1664–1676

    Article  CAS  PubMed  Google Scholar 

  68. Liang B, Zhan Y, Wang Y, Gu E, Dai D, Cai J et al (2016) Effect of 24 Cytochrome P450 2D6 variants found in the Chinese population on atomoxetine metabolism in vitro. Pharmacology 97:78–83

    Article  CAS  PubMed  Google Scholar 

  69. Cai W, Chen B, Zhang W (2007) Frequency of CYP2D6*10 and *14 alleles and their influence on the metabolic activity of CYP2D6 in a healthy Chinese population. Clin Pharmacol Ther 81(1):95–98

    Article  CAS  PubMed  Google Scholar 

  70. Qiu F, Liu S, Miao P, Zeng J, Zhu L, Zhao T et al (2016) Effects of the Chinese herbal formula “Zuojin Pill” on the pharmacokinetics of dextromethorphan in healthy Chinese volunteers with CYP2D6*10 genotype. Eur J Clin Pharmacol 72(6):689–695

    Article  CAS  PubMed  Google Scholar 

  71. Lan B, Ma F, Chen S, Wang W, Li Q, Fan Y et al (2018) Toremifene, rather than tamoxifen, might be a better option for the adjuvant endocrine therapy in CYP2D6*10T/T genotype breast cancer patients in China. Int J Cancer 143(10):2499–2504

    Article  CAS  PubMed  Google Scholar 

  72. Cui Y, Teng C, Pan A, Yuen E, Yeo K, Zhou Y et al (2007) Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele. Br J Clin Pharmacol 64(4):445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matsui A, Azuma J, Witcher J, Long A, Sauer J, Smith B et al (2012) Pharmacokinetics, safety, and tolerability of atomoxetine and effect of CYP2D6*10/*10 genotype in healthy Japanese men. J Clin Pharmacol 52(3):388–403

    Article  CAS  PubMed  Google Scholar 

  74. Byeon J, Kim Y, Na H, Jang J, Kim S, Lee Y et al (2015) Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites. Arch Pharmacal Res 38(11):2083–2091

    Article  CAS  Google Scholar 

  75. Teh L, Bertilsson L (2012) Pharmacogenomics of CYP2D6: molecular genetics, interethnic differences and clinical importance. Drug Metab Pharmacokinet 27(1):55–67

    Article  CAS  PubMed  Google Scholar 

  76. Ingelman-Sundberg M, Sim S, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116(3):496–526

    Article  CAS  PubMed  Google Scholar 

  77. Llerena A, Dorado P, Peñas-Lledó E (2009) Pharmacogenetics of debrisoquine and its use as a marker for CYP2D6 hydroxylation capacity. Pharmacogenomics 10(1):17–28

    Article  CAS  PubMed  Google Scholar 

  78. Chiba K, Kato M, Ito T, Suwa T, Sugiyama Y (2012) Inter-individual variability of in vivo CYP2D6 activity in different genotypes. Drug Metab Pharmacokinet 27(4):405–413

    Article  CAS  PubMed  Google Scholar 

  79. Witcher J, Kurtz D, Heathman M, Sauer J, Smith B (2004) Population pharmacokinetic analysis of atomoxetine in pediatric patients. Clin Pharmacol Ther 75(2):P46–P46

    Article  Google Scholar 

  80. Garnock-Jones K, Keating G (2009) Atomoxetine: a review of its use in attention-deficit hyperactivity disorder in children and adolescents. Paediatr Drugs 11(3):203–226

    Article  PubMed  Google Scholar 

  81. Fijal B, Guo Y, Li S, Ahl J, Goto T, Tanaka Y et al (2015) CYP2D6 predicted metabolizer status and safety in adult patients with attention-deficit hyperactivity disorder participating in a large placebo-controlled atomoxetine maintenance of response clinical trial. J Clin Pharmacol 55(10):1167–1174

    Article  CAS  PubMed  Google Scholar 

  82. Choi C, Bae J, Lee Y, Lee H, Jang C, Lee S (2014) Effects of CYP2C19 genetic polymorphisms on atomoxetine pharmacokinetics. J Clin Psychopharmacol 34(1):139–142

    Article  CAS  PubMed  Google Scholar 

  83. Demirci E, Sener E, Gul M, Onal M, Dal F (2022) A view of response and resistance to atomoxetine treatment in children with ADHD: effects of CYP2C19 polymorphisms and BDNF levels. Eur J Clin Pharmacol 78(7):1095–1104

    Article  CAS  PubMed  Google Scholar 

  84. Zhou S, Liu J, Chowbay B (2009) Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 41(2):89–295

    Article  CAS  PubMed  Google Scholar 

  85. Desta Z, Zhao X, Shin J, Flockhart D (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41(12):913–958

    Article  CAS  PubMed  Google Scholar 

  86. Strom CM, Goos D, Crossley B, Zhang K, Sun W (2012) Testing for variants in CYP2C19: population frequencies and testing experience in a clinical laboratory. Genet Med 14(1):95–100

    Article  CAS  PubMed  Google Scholar 

  87. Scott S, Sangkuhl K, Gardner E, Stein C, Hulot J, Johnson J et al (2011) Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450–2C19 (CYP2C19) genotype and clopidogrel therapy. Clin Pharmacol Ther 90(2):328–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Martis S, Peter I, Hulot J, Kornreich R, Desnick R, Scott S (2013) Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J 13(4):369–377

    Article  CAS  PubMed  Google Scholar 

  89. Spina E, de Leon J (2015) Clinical applications of CYP genotyping in psychiatry. J Neural Transm 122(1):5–28

    Article  CAS  PubMed  Google Scholar 

  90. Sim S, Risinger C, Dahl M, Aklillu E, Christensen M, Bertilsson L et al (2006) A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79(1):103–113

    Article  CAS  PubMed  Google Scholar 

  91. Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J (2010) Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol 69(3):222–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Clemow D, Bushe C (2015) Atomoxetine in patients with ADHD: a clinical and pharmacological review of the onset, trajectory, duration of response and implications for patients. J Psychopharmacol (Oxford, England) 29(12):1221–1230

    Article  CAS  Google Scholar 

  93. Camporeale A, Porsdal V, De Bruyckere K, Tanaka Y, Upadhyaya H, Deix C et al (2015) Safety and tolerability of atomoxetine in treatment of attention deficit hyperactivity disorder in adult patients: an integrated analysis of 15 clinical trials. J Psychopharmacol (Oxford, England) 29(1):3–14

    Article  Google Scholar 

  94. Bymaster F, Katner J, Nelson D, Hemrick-Luecke S, Threlkeld P, Heiligenstein J et al (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27(5):699–711

    Article  CAS  PubMed  Google Scholar 

  95. Callahan P, Plagenhoef M, Blake D, Terry A (2019) Atomoxetine improves memory and other components of executive function in young-adult rats and aged rhesus monkeys. Neuropharmacology 155:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kratochvil C, Vaughan B, Daughton J, Mayfield-Jorgensen M, Burke W (2004) Atomoxetine in the treatment of attention deficit hyperactivity disorder. Expert Rev Neurother 4(4):601–611

    Article  CAS  PubMed  Google Scholar 

  97. Easton N, Steward C, Marshall F, Fone K, Marsden C (2007) Effects of amphetamine isomers, methylphenidate and atomoxetine on synaptosomal and synaptic vesicle accumulation and release of dopamine and noradrenaline in vitro in the rat brain. Neuropharmacology 52(2):405–414

    Article  CAS  PubMed  Google Scholar 

  98. Arnsten A (2011) Catecholamine influences on dorsolateral prefrontal cortical networks. Biol Psychiat 69(12):e89-99

    Article  CAS  PubMed  Google Scholar 

  99. Savill N, Buitelaar J, Anand E, Day K, Treuer T, Upadhyaya H et al (2015) The efficacy of atomoxetine for the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a comprehensive review of over a decade of clinical research. CNS Drugs 29(2):131–151

    Article  CAS  PubMed  Google Scholar 

  100. Ramoz N, Boni C, Downing A, Close S, Peters S, Prokop A et al (2009) A haplotype of the norepinephrine transporter (Net) gene Slc6a2 is associated with clinical response to atomoxetine in attention-deficit hyperactivity disorder (ADHD). Neuropsychopharmacology 34(9):2135–2142

    Article  CAS  PubMed  Google Scholar 

  101. Yang L, Qian Q, Liu L, Li H, Faraone S, Wang Y (2013) Adrenergic neurotransmitter system transporter and receptor genes associated with atomoxetine response in attention-deficit hyperactivity disorder children. J Neural Transm 120(7):1127–1133

    Article  CAS  PubMed  Google Scholar 

  102. Ray A, Maitra S, Chatterjee M, Ghosh P, Karmakar A, Sinha S et al (2017) Dimorphic association of dopaminergic transporter gene variants with treatment outcome: pilot study in Indian ADHD probands. Meta Gene. 11(C):64–69

    Article  Google Scholar 

  103. Gul M, Sener E, Onal M, Demirci E (2021) Role of the norepinephrine transporter polymorphisms in atomoxetine treatment: from response to side effects in children with ADHD. J Psychopharmacol 36(6):715-722

  104. Fang Y, Ji N, Cao Q, Su Y, Chen M, Wang Y et al (2015) Variants of dopamine beta hydroxylase gene moderate atomoxetine response in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 25(8):625–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rybak Y, McNeely H, Mackenzie B, Jain U, Levitan R (2007) Seasonality and circadian preference in adult attention-deficit/hyperactivity disorder: clinical and neuropsychological correlates. Compr Psychiatry 48(6):562–571

    Article  PubMed  Google Scholar 

  106. Faltraco F, Palm D, Uzoni A, Simon F, Thome J (2021) Atomoxetine and circadian gene expression in human dermal fibroblasts from study participants with a diagnosis of attention-deficit hyperactivity disorder. J Neural Transm 128(7):1121–1133

  107. Hvolby A (2015) Associations of sleep disturbance with ADHD: implications for treatment. Atten Defic Hyperact Disord 7(1):1–18

    Article  PubMed  Google Scholar 

  108. Korman M, Palm D, Uzoni A, Faltraco F, Tucha O, Thome J et al (2020) ADHD 24/7: Circadian clock genes, chronotherapy and sleep/wake cycle insufficiencies in ADHD. World J Biol Psychiatry 21(3):156–171

    Article  PubMed  Google Scholar 

  109. Coogan A, Schenk M, Palm D, Uzoni A, Grube J, Tsang A et al (2019) Impact of adult attention deficit hyperactivity disorder and medication status on sleep/wake behavior and molecular circadian rhythms. Neuropsychopharmacology 44(7):1198–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wille S, Cooreman S, Neels H, Lambert W (2008) Relevant issues in the monitoring and the toxicology of antidepressants. Crit Rev Clin Lab Sci 45(1):25–89

    Article  CAS  PubMed  Google Scholar 

  111. Mullen J, Shugert R, Ponsler G, Li Q, Sundaram B, Coales H et al (2005) Simultaneous quantification of atomoxetine as well as its primary oxidative and O-glucuronide metabolites in human plasma and urine using liquid chromatography tandem mass spectrometry (LC/MS/MS). J Pharm Biomed Anal 38(4):720–733

    Article  CAS  PubMed  Google Scholar 

  112. Choong E, Rudaz S, Kottelat A, Guillarme D, Veuthey J, Eap C (2009) Therapeutic drug monitoring of seven psychotropic drugs and four metabolites in human plasma by HPLC-MS. J Pharm Biomed Anal 50(5):1000–1008

    Article  CAS  PubMed  Google Scholar 

  113. Patel C, Patel M, Rani S, Nivsarkar M, Padh H (2007) A new high performance liquid chromatographic method for quantification of atomoxetine in human plasma and its application for pharmacokinetic study. J Chromatogr B Anal Technol Biomed Life Sci 850:356–360

    Article  CAS  Google Scholar 

  114. Xia Y, Guo H, Hu Y, Long J, Chen J, Chen F et al (2021) Determination of atomoxetine levels in human plasma using LC-MS/MS and clinical application to Chinese children with ADHD based on CPIC guidelines. Anal Methods 13(21):2434–2441

    Article  CAS  PubMed  Google Scholar 

  115. Schoretsanitis G, Paulzen M, Unterecker S, Schwarz M, Conca A, Zernig G et al (2018) TDM in psychiatry and neurology: a comprehensive summary of the consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology, update 2017; a tool for clinicians. World J Biol Psychiatry 19(3):162–174

    Article  PubMed  Google Scholar 

  116. Kiang T, Sherwin C, Spigarelli M, Ensom M (2012) Fundamentals of population pharmacokinetic modelling : modelling and software. Clin Pharmacokinet 51(8):515–525

    Article  CAS  PubMed  Google Scholar 

  117. Shi C, Xiao Y, Mao Y, Wu J, Lin N (2019) Voriconazole: A review of population pharmacokinetic analyses. Clin Pharmacokinet 58(6):687–703

    Article  CAS  PubMed  Google Scholar 

  118. Huang W, Nakano M, Sager J, Ragueneau-Majlessi I, Isoherranen N (2017) Physiologically based pharmacokinetic model of the CYP2D6 probe atomoxetine: extrapolation to special populations and drug-drug interactions. Drug Metab Dispos 45(11):1156–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Notsu Y, Shimizu M, Sasaki T, Nakano A, Ota M, Yoshida S et al (2020) Simple pharmacokinetic models accounting for drug monitoring results of atomoxetine and its 4-hydroxylated metabolites in Japanese pediatric patients genotyped for cytochrome P450 2D6. Drug Metab Pharmacokinet 35(2):191–200

    Article  CAS  PubMed  Google Scholar 

  120. Barrett J, Della Casa Alberighi O, Läer S, Meibohm B (2012) Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther 92(1):40–49

    Article  CAS  PubMed  Google Scholar 

  121. Abdel-Rahman S, Amidon G, Kaul A, Lukacova V, Vinks A, Knipp G (2012) Summary of the national institute of child health and human development-best pharmaceuticals for children act pediatric formulation initiatives workshop-pediatric biopharmaceutics classification system working group. Clin Ther 34(11):S11-24

    Article  PubMed  PubMed Central  Google Scholar 

  122. Edginton A, Schmitt W, Willmann S (2006) Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet 45(10):1013–1034

    Article  CAS  PubMed  Google Scholar 

  123. Jensen CM, Steinhausen HC (2015) Comorbid mental disorders in children and adolescents with attention-deficit/hyperactivity disorder in a large nationwide study. ADHD Atten Defic Hyperact Disord 7(1):27–38

    Article  PubMed  Google Scholar 

  124. Dell’Agnello G, Zuddas A, Masi G, Curatolo P, Besana D, Rossi A (2009) Use of atomoxetine in patients with attention-deficit hyperactivity disorder and co-morbid conditions. CNS Drugs 23(9):739–753

    Article  CAS  PubMed  Google Scholar 

  125. Steinhausen H, Nøvik T, Baldursson G, Curatolo P, Lorenzo M, Rodrigues Pereira R et al (2006) Co-existing psychiatric problems in ADHD in the ADORE cohort. Eur Child Adolesc Psychiatry 18(3):194–196

  126. Newcorn J, Spencer T, Biederman J, Milton D, Michelson D (2005) Atomoxetine treatment in children and adolescents with attention-deficit/hyperactivity disorder and comorbid oppositional defiant disorder. J Am Acad Child Adolesc Psychiatry 44(3):240–248

    Article  PubMed  Google Scholar 

  127. Kratochvil C, Michelson D, Newcorn J, Weiss M, Busner J, Moore R et al (2007) High-dose atomoxetine treatment of ADHD in youths with limited response to standard doses. J Am Acad Child Adolesc Psychiatry 46(9):1128–1137

    Article  PubMed  Google Scholar 

  128. Gadde K, Yonish G, Wagner H, Foust M, Allison D (2006) Atomoxetine for weight reduction in obese women: a preliminary randomised controlled trial. Int J Obes 30(7):1138–1142

    Article  CAS  Google Scholar 

  129. McElroy S, Guerdjikova A, Kotwal R, Welge J, Nelson E, Lake K et al (2007) Atomoxetine in the treatment of binge-eating disorder: a randomized placebo-controlled trial. J Clin Psychiatry 68(3):390–398

    Article  CAS  PubMed  Google Scholar 

  130. Pott W, Albayrak O, Hinney A, Hebebrand J, Pauli-Pott U (2013) Successful treatment with atomoxetine of an adolescent boy with attention deficit/hyperactivity disorder, extreme obesity, and reduced melanocortin 4 receptor function. Obes Facts 6(1):109–115

    Article  PubMed  PubMed Central  Google Scholar 

  131. Samardzic J, Allegaert K, Bajcetic M (2015) Developmental pharmacology: a moving target. Int J Pharm 492(1-2):335–337

    Article  CAS  PubMed  Google Scholar 

  132. Kearns G, Abdel-Rahman S, Alander S, Blowey D, Leeder J, Kauffman R (2003) Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med 349(12):1157–1167

    Article  CAS  PubMed  Google Scholar 

  133. Hines R, McCarver D (2002) The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther 300(2):355–360

    Article  CAS  PubMed  Google Scholar 

  134. Stevens J, Marsh S, Zaya M, Regina K, Divakaran K, Le M et al (2008) Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos 36(8):1587–1593

    Article  CAS  PubMed  Google Scholar 

  135. Blake M, Gaedigk A, Pearce R, Bomgaars L, Christensen M, Stowe C et al (2007) Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther 81(4):510–516

    Article  CAS  PubMed  Google Scholar 

  136. Strolin Benedetti M, Whomsley R, Baltes E (2005) Differences in absorption, distribution, metabolism and excretion of xenobiotics between the paediatric and adult populations. Expert Opin Drug Metab Toxicol 1(3):447–471

    Article  CAS  PubMed  Google Scholar 

  137. Verscheijden L, Koenderink J, Johnson T, de Wildt S, Russel F (2020) Physiologically-based pharmacokinetic models for children: starting to reach maturation? Pharmacol Ther 211:107541

    Article  CAS  PubMed  Google Scholar 

  138. Upadhyaya H, Kratochvil C, Ghuman J, Camporeale A, Lipsius S, D’Souza D et al (2015) Efficacy and safety extrapolation analyses for atomoxetine in young children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 25(10):799–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. van Groen B, Nicolaï J, Kuik A, Van Cruchten S, van Peer E, Smits A et al (2021) Ontogeny of hepatic transporters and drug-metabolizing enzymes in humans and in nonclinical species. Pharmacol Rev 73(2):597–678

    Article  PubMed  Google Scholar 

  140. Bebia Z, Buch S, Wilson J, Frye R, Romkes M, Cecchetti A et al (2004) Bioequivalence revisited: influence of age and sex on CYP enzymes. Clin Pharmacol Ther 76(6):618–627

    Article  CAS  PubMed  Google Scholar 

  141. Kinirons M, Crome P (1997) Clinical pharmacokinetic considerations in the elderly. An update. Clin Pharmacokinet 33(4):302–312

    Article  CAS  PubMed  Google Scholar 

  142. Pritchard J, Bryson J, Kernodle A, Benedetti T, Powell J (1992) Age and gender effects on ondansetron pharmacokinetics: evaluation of healthy aged volunteers. Clin Pharmacol Ther 51(1):51–55

    Article  CAS  PubMed  Google Scholar 

  143. Gex-Fabry M, Balant-Gorgia A, Balant L, Garrone G (1990) Clomipramine metabolism. Model-based analysis of variability factors from drug monitoring data. Clin Pharmacokinet 19(3):241–255

    Article  CAS  PubMed  Google Scholar 

  144. Hägg S, Spigset O, Dahlqvist R (2001) Influence of gender and oral contraceptives on CYP2D6 and CYP2C19 activity in healthy volunteers. Br J Clin Pharmacol 51(2):169–173

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hooper W, Qing M (1990) The influence of age and gender on the stereoselective metabolism and pharmacokinetics of mephobarbital in humans. Clin Pharmacol Ther 48(6):633–640

    Article  CAS  PubMed  Google Scholar 

  146. Richardson C, Blocka K, Ross S, Verbeeck R (1985) Effects of age and sex on piroxicam disposition. Clin Pharmacol Ther 37(1):13–18

    Article  CAS  PubMed  Google Scholar 

  147. Kratochvil C, Milton D, Vaughan B, Greenhill L (2008) Acute atomoxetine treatment of younger and older children with ADHD: a meta-analysis of tolerability and efficacy. Child Adolesc Psychiatry Ment Health 2(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  148. Fu D, Wu D, Guo H, Hu Y, Xia Y, Ji X et al (2021) The mechanism, clinical efficacy, safety, and dosage regimen of atomoxetine for ADHD therapy in children: a narrative review. Front Psych 12:780921

    Article  Google Scholar 

  149. Wilens T, Kratochvil C, Newcorn J, Gao H (2006) Do children and adolescents with ADHD respond differently to atomoxetine? J Am Acad Child Adolesc Psychiatry 45(2):149–157

    Article  PubMed  Google Scholar 

  150. Belle DJ, Ernest CS, Sauer JM, Smith BP, Thomasson HR, Witcher JW (2002) Effect of potent CYP2D6 inhibition by paroxetine on atomoxetine pharmacokinetics. J Clin Pharmacol 42(11):1219–1227

    Article  CAS  PubMed  Google Scholar 

  151. Pliszka SR (2007) Pharmacologic treatment of attention-deficit/hyperactivity disorder: efficacy, safety and mechanisms of action. Neuropsychol Rev 17(1):61–72

    Article  PubMed  Google Scholar 

  152. Pohl GM, Van Brunt DL, Ye W, Stoops WW, Johnston JA (2009) A retrospective claims analysis of combination therapy in the treatment of adult attention-deficit/hyperactivity disorder (ADHD). BMC Health Serv Res 9:95

    Article  PubMed  PubMed Central  Google Scholar 

  153. Todor I, Popa A, Neag M, Muntean D, Bocsan C, Buzoianu A et al (2016) Evaluation of a potential metabolism-mediated drug-drug interaction between atomoxetine and bupropion in healthy volunteers. J Pharm Pharm Sci 19(2):198–207

    Article  CAS  PubMed  Google Scholar 

  154. Hazell P, Becker K, Nikkanen E, Trzepacz P, Tanaka Y, Tabas L et al (2009) Relationship between atomoxetine plasma concentration, treatment response and tolerability in attention-deficit/hyperactivity disorder and comorbid oppositional defiant disorder. Atten Defic Hyperact Disord 1(2):201–210

    Article  PubMed  PubMed Central  Google Scholar 

  155. Jing Y, Kong Y, Hou X, Liu H, Fu Q, Jiao Z et al (2021) Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients. J Clin Pharm Ther 46(4):1117–1128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Specially Appointed Medical Expert Project of the Jiangsu Commission of Health (2019), the Talent Project established by the Chinese Pharmaceutical Association Hospital Pharmacy department (NO. CPA-Z05-ZC-2022-003), a grant from Jiangsu Research Hospital Association for Precision Medication (JY2022).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.X., D.D.W., and F.C.; writing—original draft preparation, D.F.; writing—review and editing, D.F., F.C., H.-L.G., Y.-H.H., W.-R.F., and Q.-Q.L.; critical revision of the manuscript, F.C; funding acquisition, F.C. All authors have read and agreed to the submitted version of the manuscript.

Corresponding authors

Correspondence to Jing Xu, Dan-Dan Wu or Feng Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Di Fu is a visiting graduate student from China Pharmaceutical University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Guo, HL., Hu, YH. et al. Personalizing atomoxetine dosing in children with ADHD: what can we learn from current supporting evidence. Eur J Clin Pharmacol 79, 349–370 (2023). https://doi.org/10.1007/s00228-022-03449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-022-03449-1

Keywords

Navigation