Skip to main content

Advertisement

Log in

Relationship between CYP2C8, UGT1A1, and ABCG2 gene polymorphisms and the exposure, efficacy, and toxicity of eltrombopag in the treatment of refractory aplastic anemia

  • Research
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Eltrombopag (ELT) is an effective drug for relapsed/refractory aplastic anemia (AA). Our previous study showed that ELT concentration was correlated with the effects of ELT. However, the factors affecting ELT concentration in patients with relapsed/refractory AA were not clarified. Therefore, we aimed to evaluate correlations between drug disposition–related gene polymorphisms and the concentration, efficacy, and toxicity of ELT.

Methods

Forty-five patients who underwent ELT administration from January 2018 to January 2019 at Peking Union Medical Colleague Hospital (PUMCH) were included. The corresponding clinical information was also collected. ELT plasma concentrations were detected by high-performance liquid chromatography-mass spectrometry (HPLC/MS). CYP2C8, (UGT)1A1, and ABCG21 were genotyped by polymerase chain reaction (PCR). The influence of gene polymorphisms on the plasma concentration, efficacy, and toxicity of ELT was analyzed.

Results

The mean dose required to obtain the optimal effects was significantly lower in the UGT1A1*6 variant carriers than in the UGT1A1*6 WT carriers. There was a significant correlation between the (UGT)1A1*6 polymorphism and higher ELT plasma concentrations (> 11.2 μg/mL). By logistic regression analysis, the efficacy of ELT was related to plasma concentration and a combined genotype of (UGT)1A1*6 and ABCG2. There were no significant associations between genotypes and adverse drug reactions (ADRs) or ELT concentrations and ADRs.

Conclusion

UGT1A1*6 is a predictor of the ELT plasma concentration and may help to determine the initial therapeutic dose in relapsed/refractory AA patients. Both drug exposure and patient genotype should be considered for better responses to ELT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available on request from the corresponding author.

References

  1. US FDA (2014) Promacta (eltrombopag) tablets: US prescribing information. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022291s012lbl.pdf. Accessed 12 Dec 2021

  2. Zhu XF, He HL, Wang SQ, Tang JY, Han B, Zhang DH et al (2019) Current treatment patterns of aplastic anemia in China: a prospective cohort registry study. Acta Haematol 142(3):162–170

    Article  PubMed  CAS  Google Scholar 

  3. Olnes MJ, Scheinberg P, Calvo KR, Desmond R, Tang Y, Dumitriu B et al (2012) (2012) Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J of Med 367:11–19

    Article  CAS  Google Scholar 

  4. Desmond R, Townsley DM, Dumitriu B, Olnes MJ, Scheinberg P, Bevans M et al (2014) Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood 123:1818–1825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zuo W, Zhang B, Ruan J, Chen M, Han B (2020) Correlation of the plasma concentration of eltrombopag with efficacy in the treatment of refractory aplastic anemia: a single-centre study in China. Front Pharmacol 11:582625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Choy KW, Wijeratne N, Doery JC (2016) Eltrombopag: liver toxicity, kidney injury or assay interference. Pathology 48(7):754–756

  7. Wang L, Weinshilboum RM (2008) Pharmacogenomics: candidate gene identification, functional validation and mechanisms. Hum Mol Genet 17(R2):R174–R179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ingelman-Sundberg M (2015) Personalized medicine into the next generation. J Intern Med 277(2):152–154

    Article  PubMed  CAS  Google Scholar 

  9. Deng Y, Madatian A, Wire MB, Bowe C, Park JW, Williams D et al (2011) Metabolism and disposition of eltrombopag, an oral, nonpeptide thrombopoietin receptor agonist, in healthy human subjects. Drug Metab Dispos 39(9):1734–1746

    Article  PubMed  CAS  Google Scholar 

  10. Marano M, Serafinelli J, Cairoli S, Martinelli D, Pisani M, Palumbo G et al (2018) Eltrombopag-induced acute liver failure in a pediatric patient: a pharmacokinetic and pharmacogenetic analysis. Ther Drug Monit 40(4):386–388

    Article  PubMed  CAS  Google Scholar 

  11. Marsh JC, Ball SE, Cavenagh J, Dokal I, Foukaneli T, Hill A et al (2009) Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol 147(1):43–70

    Article  PubMed  CAS  Google Scholar 

  12. US Department of Health and Human Services (2017) Common Terminology Criteria for Adverse Events (CTCAE) November 2017. https://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5x7.pdf. Accessed 19 Dec 2021

  13. Kaniwa N, Kurose K, Jinno H, Tanaka-Kagawa T, Saito Y, Saek M et al (2005) Racial variability in haplotype frequencies of UGT1A1 and glucuronidation activity of a novel single nucleotide polymorphism 686C> T (P229L) found in an African-American. Drug Metab Dispos 33:458–465

    Article  PubMed  CAS  Google Scholar 

  14. Robey RW, To KK, Polgar O, Dohse M, Fetsch P, Dean M et al (2009) ABCG2: a perspective. Adv Drug Deliv Rev 61(1):3–13

    Article  PubMed  CAS  Google Scholar 

  15. European Medicines Agency (2016) Revolade TM (eltrombopag): EU summary of product characteristics. Available at: https://www.ema.europa.eu. Accessed 21 Dec 2021

  16. Marano M, Serafinelli J, Cairoli S, Pisani MD, Mara PG et al (2018) Eltrombopag-induced acute liver failure in a pediatric patient: a pharmacokinetic and pharmacogenetic analysis. Ther Drug Monit 40(4):386–388

    Article  PubMed  CAS  Google Scholar 

  17. HapMap web page (2016) Available at: http://hapmap.ncbi.nlm.nih.gov/cgi‐perl/gbrowse/hapmap28_B36/. Accessed 22 July 2022

  18. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI et al (2001) Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11:597–607

    Article  PubMed  CAS  Google Scholar 

  19. Natarajan K, Xie Y, Baer MR, Ross DD (2012) Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 83(8):1084–1103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. de Jong FA, Marsh S, Mathijssen RH, King C, Verweij J, Sparreboom A, McLeod HL (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 10(17):5889–5894

    Article  PubMed  Google Scholar 

  21. Ishikawa T, Aw W, Kaneko K (2013) Metabolic interactions of purine derivatives with human ABC transporter ABCG2: genetic testing to assess gout risk. Pharmaceuticals (Basel) 6(11):1347–1360

    Article  Google Scholar 

  22. Keskitalo JE, Pasanen MK, Neuvonen PJ, Niemi M (2009) Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin. Pharmacogenomics 10(10):1617–1624

  23. Kitamura S, Maeda K, Wang Y, Sugiyama Y (2008) Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 36(10):2014–2023

    Article  PubMed  CAS  Google Scholar 

  24. Sparreboom A, Gelderblom H, Marsh S, Ahluwalia R, Obach R, Principe P et al (2004) Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin Pharmacol Ther 76(1):38–44

    Article  PubMed  CAS  Google Scholar 

  25. Litman T, Brangi M, Hudson E, Fetsch P, Abati A, Ross DD et al (2000) The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci 113(Pt 11):2011–2021

    Article  PubMed  CAS  Google Scholar 

  26. Volk EL, Farley KM, Wu Y, Li F, Robey RW, Schneider E (2002) Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 62(17):5035–5040

    PubMed  CAS  Google Scholar 

  27. Nakatomi K, Yoshikawa M, Oka M, Ikegami Y, Hayasaka S, Sano K et al (2001) Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem Biophys Res Commun 288(4):827–832

    Article  PubMed  CAS  Google Scholar 

  28. Pavek P, Merino G, Wagenaar B, E, Novotna M, Jonker JW, Schinkel AH (2005) Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo (4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther 312(1):144–152

    Article  PubMed  CAS  Google Scholar 

  29. Gong IY, Mansell SE, Kim RB (2013) Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol 112(3):164–170

    Article  PubMed  CAS  Google Scholar 

  30. Gong IY, Kim RB (2013) Importance of pharmacokinetic profile and variability as determinants of dose and response to dabigatran, rivaroxaban, and apixaban. Can J Cardiol 29(7 Suppl.):S24–S33

    Article  PubMed  Google Scholar 

  31. Matsuo H, Ichida K, Takada T, Nakayama A, Nakashima H, Nakamura T et al (2014) Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci Rep 3:2014

    Article  Google Scholar 

  32. van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H et al (2007) Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol 27(4):1247–1253

    Article  PubMed  Google Scholar 

  33. Mao Q, Unadkat JD (2015) Role of the breast cancer resistance protein (BCRP/ ABCG2) in drug transport–an update. AAPS J 17(1):65–82

    Article  PubMed  CAS  Google Scholar 

  34. Yagura H, Watanabe D, Kushida H, Tomishima K, Togami H, Hirano A et al (2017) Impact of UGT1A1 gene polymorphisms on plasma dolutegravir trough concentrations and neuropsychiatric adverse events in Japanese individuals infected with HIV-1. BMC Infect Dis 17(1):622

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yagura H, Watanabe D, Ashida M, Kushida H, Hirota K, Ikuma M et al (2015) Correlation between UGT1A1 polymorphisms and raltegravir plasma trough concentrations in Japanese HIV-1-infected patients. J Infect Chemother 21:713–717

    Article  PubMed  CAS  Google Scholar 

  36. Yamaguchi T, Iwasa S, Shoji H, Honma Y, Takashima A, Kato K et al (2019) Association between UGT1A1 gene polymorphism and safety and efficacy of irinotecan monotherapy as the third-line treatment for advanced gastric cancer. Gastric Cancer 22(4):778–784

    Article  PubMed  CAS  Google Scholar 

  37. Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512

    Article  PubMed  CAS  Google Scholar 

  38. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP (2002) Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 99:12339–12344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ahmed F, Arseni N, Glimm H, Hiddemann W, Buske C, Feuring-Buske M (2008) Constitutive expression of the ATP-binding cassette transporter ABCG2 enhances the growth potential of early human hematopoietic progenitors. Stem Cells 26(3):810–818

    Article  PubMed  CAS  Google Scholar 

  40. Hwang YY, Gill H, Chan TSY, Leung GMK, Cheung CYM, Kwong YL (2018) Eltrombopag in the management of aplastic anaemia: real-world experience in a non-trial setting. Hematology 23(7):399–404

    Article  PubMed  CAS  Google Scholar 

  41. Rodgers GM, Kurtti AL, Gilreath JA (2019) Are eltrombopag plasma and skin hyperpigmentation related? The eyes have it. Am J Hematol Actions 94(3):394–395

    Article  Google Scholar 

  42. Rodgers GM, Gilreath JA (2018) Eltrombopag as initial monotherapy for severe aplastic anemia-a case report. Ann Hematol 97(8):1517–1518

    Article  PubMed  Google Scholar 

  43. Gibiansky E, Zhang JP, Williams D, Wang Z, Ouellet D (2011) Population pharmacokinetics of eltrombopag in healthy subjects and patients with chronic idiopathic thrombocytopenic purpura. J Clin Pharmacol 51:842–856

    Article  PubMed  CAS  Google Scholar 

  44. Yang R, Li J, Jin J, Huang MJ, Zhang XH, Hou M (2017) Multicentre, randomised phase III study of the efficacy and safety of eltrombopag in Chinese patients with chronic immune thrombocytopenia. Br J Haematol 176(1):101–110

    Article  PubMed  CAS  Google Scholar 

  45. Farrell C, Hayes SC, Wire M, Zhang JP (2014) Population pharmacokinetic/pharmacodynamic modelling of eltrombopag in healthy volunteers and subjects with chronic liver disease. Br J Clin Pharmacol 77(3):532–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Matthys G, Park JW, McGuire S, Wire MB, Bowen C, Williams D et al (2011) Clinical pharmacokinetics, platelet response, and safety of eltrombopag at supratherapeutic doses of up to 200 mg once daily in healthy volunteers. J Clin Pharmacol 51(3):301–308

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by the Chinese Academy of Medical Sciences (CAMS) innovation fund for medical sciences (CIFMS 2021-I2M-1–003); the National Natural Science Foundation of China Grants (81974183, 81970106, 81601033); and the Fundamental Research Funds for the Central Universities (2020-RW310-003).

Author information

Authors and Affiliations

Authors

Contributions

Wei Zuo performed the research and wrote the manuscript; Bo Zhang and Bing Han designed the research; Bo Liu and Miao Chen analyzed the data. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Bo Zhang or Bing Han.

Ethics declarations

Ethics approval

This research was reviewed and approved by the Ethical Committee of the Peking Union Medical College and Chinese Academy of Medical Sciences (Beijing, China). All the research was conducted in accordance with the Declaration of Helsinki.

Consent to participate and consent for publication

Informed written consent was obtained from the patient for participating in this trail and publication of this research.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, W., Liu, B., Chen, M. et al. Relationship between CYP2C8, UGT1A1, and ABCG2 gene polymorphisms and the exposure, efficacy, and toxicity of eltrombopag in the treatment of refractory aplastic anemia. Eur J Clin Pharmacol 78, 1657–1666 (2022). https://doi.org/10.1007/s00228-022-03367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-022-03367-2

Keywords

Navigation