Skip to main content

Advertisement

Log in

Pharmacotherapy of Alzheimer’s disease: an overview of systematic reviews

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Alzheimer’s disease (AD) is a neurodegenerative disease and the most common cause of dementia. In this umbrella systematic review (SR), we summarized the efficacy of different pharmacological interventions in improving cognitive function in patients with AD.

Methods

A systematic search was performed through the PubMed, Scopus, Embase, and Cochrane databases for SRs of studies assessing the efficacy of pharmacological interventions versus placebo in improving cognitive function in AD or mild cognitive impairment due to AD. The risk of bias (RoB) was assessed using the Risk of Bias in SRs (ROBIS) tool.

Results

Out of 1748 articles found through the database survey, 33 SR articles were included. These studies assessed effects of immunotherapy, cholinesterase inhibitors (ChEIs), memantine, statins, lithium, nonsteroidal anti-inflammatory drugs (NSAIDs), antidiabetic agents, Cerebrolysin, RAS-targeting antihypertensive drugs (ARBs and ACEIs), psychostimulants, glycogen synthase kinase 3 (GSK-3) inhibitors, melatonin, and herbal medications on cognitive function in AD patients. There was no notable overall RoB in 18 studies (54.5%), the RoB in 14 studies (42.4%) was high, and in one study (3.0%) it was unclear.

Conclusions

The use of ChEIs, including rivastigmine, galantamine, and donepezil, as well as memantine has demonstrated a positive impact on improving cognitive outcomes of AD patients, but no considerable effects were found for immunotherapies. Melatonin, statins, antihypertensive drugs, antidiabetic agents, Cerebrolysin, psychostimulants, and some herbal drugs such as Danggui-Shaoyao-San and Ginkgo biloba seem to be effective in improving cognitive function of AD patients, but the evidence in this regard is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data

All the supporting data and information are available within the manuscript.

Abbreviations

AD:

Alzheimer’s Disease

WHO:

World Health Organization

FDA:

US Food and Drug Administration

Aβ:

Amyloid-beta

ChEIs:

Cholinesterase inhibitors

RCT:

Randomized controlled trial

SR:

Systematic review

MA:

Meta-analysis

MCI:

Mild cognitive impairment

RoB:

Risk of bias

ROBIS:

Risk of Bias in Systematic Reviews

ADAS-Cog:

Alzheimer's Disease Assessment Scale–Cognitive Subscale

MMSE:

Mini-Mental State Exam

SIB:

Severe Impairment Battery

WMD:

Weighted mean difference

SMD:

Standard mean difference

MD:

Mean difference

IVIg:

Intravenous immunoglobulin

NSAID:

Nonsteroidal anti-inflammatory drug

GSK-3:

Glycogen synthase kinase 3,

GPCOG:

General Practitioner Assessment of Cognition,

AD8:

Eight-item Informant Interview to Differentiate Aging and Dementia

IQCODE:

Informant Questionnaire on Cognitive Decline in the Elderly

CSF:

Cerebrospinal fluid

GLP-1:

Glucagon-like peptide-1

References

  1. Rocca WA, Amaducci L (2019) Epidemiology of Alzheimer’s disease. Neuroepidemiology 55–96

    Article  Google Scholar 

  2. Eratne D, Loi SM, Farrand S, Kelso W, Velakoulis D, Looi JC (2018) Alzheimer’s disease: clinical update on epidemiology, pathophysiology and diagnosis. Australas Psychiatry 26(4):347–357

    Article  PubMed  Google Scholar 

  3. Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde Allgemeine Zeitschrift fur Psychiatrie und Psychisch-gerichtliche Medizin. Psychiatry (Edgmont) 64:146–148

    Google Scholar 

  4. Wilson RS, Segawa E, Boyle PA, Anagnos SE, Hizel LP, Bennett DA (2012) The natural history of cognitive decline in Alzheimer’s disease. Psychol Aging 27(4):1008–1017

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barker WW, Luis CA, Kashuba A, Luis M, Harwood DG, Loewenstein D et al (2002) Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord 16(4):203–212

    Article  PubMed  Google Scholar 

  6. Bature F, Guinn BA, Pang D, Pappas Y (2017) Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open 7(8):e015746

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burns A, Jacoby R, Levy R (1990) Psychiatric phenomena in Alzheimer’s disease. I: Disorders of thought content. Br J Psychiatry 157(72–76):92–94

    Google Scholar 

  8. Joe E, Ringman JM (2019) Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. Bmj 367

  9. Atri A (2019) The Alzheimer’s disease clinical spectrum: Diagnosis and management. Medical Clinics 103(2):263–293

    PubMed  Google Scholar 

  10. Feldman HH, Woodward M (2005) The staging and assessment of moderate to severe Alzheimer disease. Neurology 65(6 suppl 3):S10

    Article  Google Scholar 

  11. Knopman DS, Jones DT, Greicius MD (2021) Failure to demonstrate efficacy of aducanumab: An analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement 17(4):696–701

    Article  PubMed  Google Scholar 

  12. Selkoe DJ (2019) Alzheimer disease and aducanumab: adjusting our approach. Nat Rev Neurol 15(7):365–366

    Article  PubMed  Google Scholar 

  13. Retinasamy T, Shaikh MF (2021) Aducanumab for Alzheimer’s disease: An update. Neurosci Res Notes 4(2):17–20

    Article  Google Scholar 

  14. Koola MM (2020) Galantamine-Memantine combination in the treatment of Alzheimer’s disease and beyond. Psychiatry Res 293:113409

    Article  PubMed  CAS  Google Scholar 

  15. Walsh S, Merrick R, Milne R, Brayne C (2021) Aducanumab for Alzheimer’s disease? BMJ 374:n1682

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hassan M, Raza H, Abbasi MA, Moustafa AA, Seo S-Y (2019) The exploration of novel Alzheimer’s therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed Pharmacother 109:2513–2526

    Article  PubMed  CAS  Google Scholar 

  17. Khoury R, Patel K, Gold J, Hinds S, Grossberg GT (2017) Recent progress in the pharmacotherapy of Alzheimer’s disease. Drugs Aging 34(11):811–820

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi H, Ohnishi T, Nakagawa R, Yoshizawa K (2016) The comparative efficacy and safety of cholinesterase inhibitors in patients with mild-to-moderate Alzheimer’s disease: a Bayesian network meta-analysis. Int J Geriatr Psychiatry 31(8):892–904

    Article  PubMed  Google Scholar 

  19. Tsoi KK, Chan JY, Chan FC, Hirai HW, Kwok TC, Wong SY (2019) Monotherapy is good enough for patients with mild-to-moderate Alzheimer’s disease: a network meta-analysis of 76 randomized controlled trials. Clin Pharmacol Ther 105(1):121–130

    Article  PubMed  Google Scholar 

  20. Cui CC, Sun Y, Wang XY, Zhang Y, Xing Y (2019) The effect of anti-dementia drugs on Alzheimer disease-induced cognitive impairment: A network meta-analysis. Medicine (Baltimore) 98(27):e16091

    Article  Google Scholar 

  21. Fan F, Liu H, Shi X, Ai Y, Liu Q, Cheng Y (2022) The efficacy and safety of Alzheimer’s disease therapies: An updated umbrella review. J Alzheimers Dis 85(3):1195–1204

    Article  PubMed  Google Scholar 

  22. Whiting P, Savović J, Higgins JP, Caldwell DM, Reeves BC, Shea B et al (2016) ROBIS: a new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol 69:225–234

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kurlowicz L, Wallace M (1999) The mini-mental state examination (MMSE). SLACK Incorporated Thorofare, NJ 8–9

  24. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–98

    Article  PubMed  CAS  Google Scholar 

  25. Kueper JK, Speechley M, Montero-Odasso M (2018) The Alzheimer’s disease assessment scale-cognitive subscale (ADAS-Cog): Modifications and responsiveness in pre-dementia populations. A narrative review. J Alzheimers Dis 63(2):423–444

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quinn L, Bello-Haas VD (2007) Chapter 17 - Progressive Central Nervous System Disorders. In: Cameron MH, Monroe LG (eds) Physical Rehabilitation. W.B. Saunders, Saint Louis, pp 436–472

    Chapter  Google Scholar 

  27. O’Bryant SE, Waring SC, Cullum CM, Hall J, Lacritz L, Massman PJ et al (2008) Staging dementia using Clinical Dementia Rating Scale Sum of Boxes scores: a Texas Alzheimer’s research consortium study. Arch Neurol 65(8):1091–1095

    Article  PubMed  PubMed Central  Google Scholar 

  28. Khan TK (2016) Chapter 2 - Clinical Diagnosis of Alzheimer’s Disease. In Khan TK, editor. Biomarkers in Alzheimer's Disease: Academic Press 27–48

  29. Foroutan N, Hopkins RB, Tarride JE, Florez ID, Levine M (2019) Safety and efficacy of active and passive immunotherapy in mild-to-moderate Alzheimer’s disease: A systematic review and network meta-analysis. Clin Invest Med 42(1):E53–E65

    Article  PubMed  Google Scholar 

  30. Li C, Ma Q, Chen S, Feng J, He Y (2016) Amyloid beta directed antibody for Alzheimer’s disease, an evidence based meta-analysis. Cell Mol Biol (Noisy-le-grand) 62(4):83–87

    CAS  Google Scholar 

  31. Lu L, Zheng X, Wang S, Tang C, Zhang Y, Yao G et al (2020) Anti-Aβ agents for mild to moderate Alzheimer’s disease: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 91(12):1316–1324

    Article  PubMed  Google Scholar 

  32. Penninkilampi R, Brothers HM, Eslick GD (2017) Safety and efficacy of anti-amyloid-β immunotherapy in Alzheimer’s disease: A systematic review and meta-analysis. J Neuroimmune Pharmacol 12(1):194–203

    Article  PubMed  Google Scholar 

  33. Abushouk AI, Elmaraezy A, Aglan A, Salama R, Fouda S, Fouda R et al (2017) Bapineuzumab for mild to moderate Alzheimer's disease: A meta-analysis of randomized controlled trials. BMC Neurol 17(1)

  34. Liu J, Wang LN (2019) Intravenous immunoglobulins for Alzheimer’s disease and mild cognitive impairment due to Alzheimer’s disease: A systematic review with meta-analysis. Expert Rev Neurother 19(6):475–480

    Article  PubMed  CAS  Google Scholar 

  35. Manolopoulos A, Andreadis P, Malandris K, Avgerinos I, Karagiannis T, Kapogiannis D et al (2019) Intravenous Immunoglobulin for patients with Alzheimer’s disease: A systematic review and meta-analysis. Am J Alzheimers Dis Other Demen 34(5):281–289

    Article  PubMed  PubMed Central  Google Scholar 

  36. Okuya M, Matsunaga S, Ikuta T, Kishi T, Iwata N (2018) Efficacy, acceptability, and safety of intravenous immunoglobulin administration for mild-to-moderate Alzheimer’s disease: A systematic review and meta-analysis. J Alzheimers Dis 66(4):1379–1387

    Article  PubMed  CAS  Google Scholar 

  37. Blanco-Silvente L, Castells X, Saez M, Barceló MA, Garre-Olmo J, Vilalta-Franch J et al (2017) Discontinuation, efficacy, and safety of cholinesterase inhibitors for Alzheimer’s disease: a meta-analysis and meta-regression of 43 randomized clinical trials enrolling 16 106 patients. Int J Neuropsychopharmacol 20(7):519–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Su J, Liu Y, Liu Y, Ren L (2015) Long-term effectiveness of rivastigmine patch or capsule for mild-to-severe Alzheimers disease: A meta-analysis. Expert Rev Neurother 15(9):1093–1103

    Article  PubMed  CAS  Google Scholar 

  39. Birks JS, Evans JG (2015) Rivastigmine for Alzheimer's disease. Cochrane Database Syst Rev (4):Cd001191

  40. Jiang D, Yang X, Li M, Wang Y, Wang Y (2015) Efficacy and safety of galantamine treatment for patients with Alzheimer’s disease: a meta-analysis of randomized controlled trials. J Neural Transm (Vienna) 122(8):1157–1166

    Article  CAS  Google Scholar 

  41. Zhang X, Shao J, Wei Y, Zhang H (2016) Efficacy of galantamine in treatment of Alzheimer’s disease: an update meta-analysis. Int J Clin Exp Med 9(4):7423–7430

    CAS  Google Scholar 

  42. Li D-D, Zhang Y-H, Zhang W, Zhao P (2019) Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front Neurosci 13(472)

  43. Blanco-Silvente L, Capellà D, Garre-Olmo J, Vilalta-Franch J, Castells X (2018) Predictors of discontinuation, efficacy, and safety of memantine treatment for Alzheimer’s disease: meta-analysis and meta-regression of 18 randomized clinical trials involving 5004 patients. BMC Geriatr 18(1):168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jiang J, Jiang H (2015) Efficacy and adverse effects of memantine treatment for Alzheimer’s disease from randomized controlled trials. Neurol Sci 36(9):1633–1641

    Article  PubMed  Google Scholar 

  45. Kishi T, Matsunaga S, Oya K, Nomura I, Ikuta T, Iwata N (2017) Memantine for Alzheimer’s disease: An updated systematic review and meta-analysis. J Alzheimers Dis 60(2):401–425

    Article  PubMed  CAS  Google Scholar 

  46. Matsunaga S, Kishi T, Iwata N (2015) Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS ONE 10(4):e0123289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. McShane R, Westby MJ, Roberts E, Minakaran N, Schneider L, Farrimond LE et al (2019) Memantine for dementia. Cochrane Database Syst Rev (3)

  48. Sumsuzzman DM, Choi J, Jin Y, Hong Y (2021) Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer’s disease and insomnia: a systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev

  49. Wang Y-Y, Zheng W, Ng CH, Ungvari GS, Wei W, Xiang Y-T (2017) Meta-analysis of randomized, double-blind, placebo-controlled trials of melatonin in Alzheimer’s disease. Int J Geriatr Psychiatry 32(1):50–57

    Article  PubMed  Google Scholar 

  50. Xuan K, Zhao T, Qu G, Liu H, Chen X, Sun Y (2020) The efficacy of statins in the treatment of Alzheimer’s disease: a meta-analysis of randomized controlled trial. Neurol Sci 41(6):1391–1404

    Article  PubMed  Google Scholar 

  51. Ye R, Hu Y, Yao A, Yang Y, Shi Y, Jiang Y et al (2015) Impact of renin–angiotensin system-targeting antihypertensive drugs on treatment of Alzheimer’s disease: a meta-analysis. Int J Clin Pract 69(6):674–681

    Article  PubMed  CAS  Google Scholar 

  52. Miguel-Álvarez M, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Garatachea N et al (2015) Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: A systematic review and meta-analysis of treatment effect. Drugs Aging 32(2):139–147

    Article  PubMed  CAS  Google Scholar 

  53. Cao B, Rosenblat JD, Brietzke E, Park C, Lee Y, Musial N et al (2018) Comparative efficacy and acceptability of antidiabetic agents for Alzheimer’s disease and mild cognitive impairment: A systematic review and network meta-analysis. Diabetes Obes Metab 20(10):2467–2471

    Article  PubMed  Google Scholar 

  54. Matsunaga S, Kishi T, Annas P, Basun H, Hampel H, Iwata N (2015) Lithium as a treatment for Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 48(2):403–410

    Article  PubMed  CAS  Google Scholar 

  55. Matsunaga S, Fujishiro H, Takechi H (2019) Efficacy and safety of glycogen synthase kinase 3 inhibitors for Alzheimer’s disease: A systematic review and meta-analysis. J Alzheimers Dis 69(4):1031–1039

    Article  PubMed  CAS  Google Scholar 

  56. Gauthier S, Proaño JV, Jia J, Froelich L, Vester JC, Doppler E (2015) Cerebrolysin in mild-to-moderate Alzheimer’s disease: A meta-analysis of randomized controlled clinical trials. Dement Geriatr Cogn Disord 39(5–6):332–347

    Article  PubMed  CAS  Google Scholar 

  57. Kishi T, Sakuma K, Iwata N (2020) Efficacy and safety of psychostimulants for Alzheimer’s disease: A systematic review and meta-analysis. Pharmacopsychiatry 53(3):109–114

    Article  PubMed  CAS  Google Scholar 

  58. Kim Y, Cho SH (2020) Danggui-Shaoyao-San for dementia: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 99(4):e18507

    Article  Google Scholar 

  59. Liao Z, Cheng L, Li X, Zhang M, Wang S, Huo R (2020) Meta-analysis of Ginkgo biloba preparation for the treatment of Alzheimer’s disease. Clin Neuropharmacol 43(4):93–99

    Article  PubMed  Google Scholar 

  60. Zhang Y, Noh K, Song W (2019) Chinese herbal medicines on cognitive function and activity of daily living in senior adults with Alzheimer’s disease: a systematic review and meta-analysis. Integr Med Res 8(2):92–100

    Article  PubMed  PubMed Central  Google Scholar 

  61. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr res 12(3):189–98

    Article  PubMed  CAS  Google Scholar 

  62. Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatry 141(11):1356–1364

    Article  PubMed  CAS  Google Scholar 

  63. Levine SZ, Yoshida K, Goldberg Y, Samara M, Cipriani A, Efthimiou O et al (2021) Linking the mini-mental state examination, the Alzheimer’s disease assessment scale-cognitive subscale and the severe impairment battery: evidence from individual participant data from five randomised clinical trials of donepezil. Evidence Based Mental Health 24(2):56

    Article  PubMed  Google Scholar 

  64. Balsis S, Benge JF, Lowe DA, Geraci L, Doody RS (2015) How do scores on the ADAS-Cog, MMSE, and CDR-SOB correspond? Clin Neuropsychol 29(7):1002–1009

    Article  PubMed  Google Scholar 

  65. Khandker R, Black C, Pike J, Husbands J, Ambegaonkar B, Jones E (2018) The relationship between mini-mental state examination (MMSE) & Alzheimer’s disease assessment scale-cognitive subscale (ADAS-cog) using real world data in US & Europe (P5.178). Neurology 90(15 Supplement):P5.178

  66. Mitchell E, d’Amico V, Geerts H (2021) Relationship between CDR Sum of Boxes and ADAS-COG derived from historical clinical trials. Alzheimers Dement 17(S9):e052153

    Article  Google Scholar 

  67. Sheehan B (2012) Assessment scales in dementia. Ther Adv Neurol Disord 5(6):349–358

    Article  PubMed  PubMed Central  Google Scholar 

  68. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580

    Article  PubMed  CAS  Google Scholar 

  69. Kashyap G, Bapat D, Das D, Gowaikar R, Amritkar RE, Rangarajan G et al (2019) Synapse loss and progress of Alzheimer’s disease -A network model. Sci Rep 9(1):6555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s Disease. Acta Neuropathol 61(2):101–108

    Article  PubMed  CAS  Google Scholar 

  71. Jia JP, Jia JM, Zhou WD, Xu M, Chu CB, Yan X et al (2004) Differential acetylcholine and choline concentrations in the cerebrospinal fluid of patients with Alzheimer’s disease and vascular dementia. Chin Med J 117(8):1161–1164

    PubMed  CAS  Google Scholar 

  72. Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N et al (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimes Dis JAD 11(1):97–116

    Article  PubMed  CAS  Google Scholar 

  73. Granger AJ, Shi Y, Lu W, Cerpas M, Nicoll RA (2013) LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature 493(7433):495–500

    Article  PubMed  CAS  Google Scholar 

  74. Koch G, Di Lorenzo F, Bonnì S, Giacobbe V, Bozzali M, Caltagirone C et al (2014) Dopaminergic modulation of cortical plasticity in Alzheimer’s disease patients. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 39(11):2654–2661

    Article  CAS  Google Scholar 

  75. Smart TG, Stephenson FA (2019) A half century of γ-aminobutyric acid. Brain Neurosci Adv 3:2398212819858249

    PubMed  PubMed Central  Google Scholar 

  76. Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306(3):821–827

    Article  PubMed  CAS  Google Scholar 

  77. Boller F, Forette F (1989) Alzheimer’s disease and THA: a review of the cholinergic theory and of preliminary results. Biomed Pharmacother 43(7):487–491

    Article  PubMed  CAS  Google Scholar 

  78. Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A et al (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M et al (2015) Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22(6):499–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C et al (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12(1):289–309

    Article  PubMed  CAS  Google Scholar 

  81. Lewis J, Dickson DW (2016) Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 131(1):27–48

    Article  PubMed  CAS  Google Scholar 

  82. Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV (2020) Type 3 diabetes and its role implications in Alzheimer’s disease. Int J Mol Sci 21(9):3165

    Article  PubMed Central  CAS  Google Scholar 

  83. Zhang C, Wang Y, Wang D, Zhang J, Zhang F (2018) NSAID exposure and risk of Alzheimer’s disease: An updated meta-analysis from cohort studies. Front Aging Neurosci 10:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Larsson SC, Markus HS (2018) Does treating vascular risk factors prevent dementia and Alzheimer’s disease? a systematic review and meta-analysis. J Alzheimers Dis JAD 64(2):657–668

    Article  PubMed  Google Scholar 

  85. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2019) Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement Transl Res Clin Interv 5:272–293

    Article  Google Scholar 

  86. Cummings J (2021) New approaches to symptomatic treatments for Alzheimer’s disease. Mol Neurodegener 16(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  87. Huang W-J, Zhang X, Chen W-W (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4(5):519–522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lee J, Jin C, Cho S-Y, Park S-U, Jung W-S, Moon S-K et al (2020) Herbal medicine treatment for Alzheimer disease: A protocol for a systematic review and meta-analysis. Medicine 99(33)

  89. Tajadini H, Saifadini R, Choopani R, Mehrabani M, Kamalinejad M, Haghdoost AA (2015) Herbal medicine Davaie Loban in mild to moderate Alzheimer’s disease: A 12-week randomized double-blind placebo-controlled clinical trial. Complement Ther Med 23(6):767–772

    Article  PubMed  Google Scholar 

  90. Tian J, Shi J, Zhang X, Wang Y (2010) Herbal therapy: a new pathway for the treatment of Alzheimer’s disease. Alzheimers Res Ther 2(5):30

    Article  PubMed  PubMed Central  Google Scholar 

  91. John OO, Amarachi IS, Chinazom AP, Adaeze E, Kale MB, Umare MD et al (2022) Phytotherapy: A promising approach for the treatment of Alzheimer’s disease. Pharmacol Res Modern Chin Med 2:100030

    Article  Google Scholar 

  92. Santos-Neto LLD, de Vilhena Toledo MA, Medeiros-Souza P, de Souza GA (2006) The use of herbal medicine in Alzheimer's disease—A systematic review. Evid Based Complementary Altern Med 3:429564

  93. Grossberg GT, Tong G, Burke AD, Tariot PN (2019) Present algorithms and future treatments for Alzheimer’s disease. J Alzheimers Dis 67(4):1157–1171

    Article  PubMed  PubMed Central  Google Scholar 

  94. Piamonte BLC, Espiritu AI, Anlacan VMM (2020) Effects of citicoline as an adjunct treatment for Alzheimer’s disease: a systematic review. J Alzheimers Dis 76(2):725–732

    Article  PubMed  CAS  Google Scholar 

  95. Robinson DM, Keating GM (2006) Memantine: a review of its use in Alzheimer’s disease. Drugs 66(11):1515–1534

    Article  PubMed  CAS  Google Scholar 

  96. Matsunaga S, Kishi T, Iwata N (2014) Combination therapy with cholinesterase inhibitors and memantine for Alzheimer's disease: a systematic review and meta-analysis. Int J Neuropsychopharmacol 18(5)

  97. Glinz D, Gloy VL, Monsch AU, Kressig RW, Patel C, McCord KA et al (2019) Acetylcholinesterase inhibitors combined with memantine for moderate to severe Alzheimer’s disease: a meta-analysis. Swiss Med Wkly 149:w20093

    PubMed  CAS  Google Scholar 

  98. Guo J, Wang Z, Liu R, Huang Y, Zhang N, Zhang R (2020) Memantine, donepezil, or combination therapy—what is the best therapy for Alzheimer’s disease? A network meta-analysis. Brain Behav 10(11):e01831

    Article  PubMed  PubMed Central  Google Scholar 

  99. Relkin N (2014) Intravenous immunoglobulin for Alzheimer’s disease. Clin Exp Immunol 178(Suppl 1):27–9

    Article  PubMed  PubMed Central  Google Scholar 

  100. van Dyck CH (2018) Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: Pitfalls and Promise. Biol Psychiat 83(4):311–319

    Article  PubMed  CAS  Google Scholar 

  101. Holmes C (2013) Intravenous immunoglobulin for Alzheimer’s disease. Lancet Neurol 12(3):218–219

    Article  PubMed  Google Scholar 

  102. Nous A, Engelborghs S, Smolders I (2021) Melatonin levels in the Alzheimer’s disease continuum: a systematic review. Alzheimers Res Ther 13(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wang J, Zhao Z, Lin E, Zhao W, Qian X, Freire D et al (2013) Unintended effects of cardiovascular drugs on the pathogenesis of Alzheimer’s disease. PLoS ONE 8(6):e65232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Torrandell-Haro G, Branigan GL, Vitali F, Geifman N, Zissimopoulos JM, Brinton RD (2020) Statin therapy and risk of Alzheimer’s and age-related neurodegenerative diseases. Alzheimers Dement Transl Res Clin Interv 6(1):e12108

    Article  Google Scholar 

  105. Jeong S-M, Shin DW, Yoo TG, Cho MH, Jang W, Lee J et al (2021) Association between statin use and Alzheimer’s disease with dose response relationship. Sci Rep 11(1):15280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Antón Álvarez X, Fuentes P (2011) Cerebrolysin in Alzheimer's disease. Drugs Today (Barcelona, Spain: 1998) 47(7):487–513

  107. Gavrilova SI, Alvarez A (2021) Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer’s disease: 30 years of clinical use. Med Res Rev 41(5):2775–2803

    Article  PubMed  CAS  Google Scholar 

  108. Avila J, Wandosell F, Hernández F (2010) Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Rev Neurother 10(5):703–710

    Article  PubMed  CAS  Google Scholar 

  109. Zhang X, Heng X, Li T, Li L, Yang D, Zhang X et al (2011) Long-term treatment with lithium alleviates memory deficits and reduces amyloid-β production in an aged Alzheimer’s disease transgenic mouse model. J Alzheimers Dis 24(4):739–749

    Article  PubMed  CAS  Google Scholar 

  110. Kessing LV, Forman JL, Andersen PK (2010) Does lithium protect against dementia? Bipolar Disord 12(1):87–94

    Article  PubMed  Google Scholar 

  111. Huang Q, Luo D, Chen L, Liang F-X, Chen R (2019) Effectiveness of acupuncture for Alzheimer’s disease: An updated systematic review and meta-analysis. Curr Med Sci 39(3):500–511

    Article  PubMed  CAS  Google Scholar 

  112. Fang Z, Tang Y, Ying J, Tang C, Wang Q (2020) Traditional Chinese medicine for anti-Alzheimer’s disease: berberine and evodiamine from Evodia rutaecarpa. Chin Med 15(1):82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Vasic V, Barth K, Schmidt MHH (2019) Neurodegeneration and neuro-regeneration—Alzheimer’s disease and stem cell therapy. Int J Mol Sci 20(17):4272

    Article  PubMed Central  CAS  Google Scholar 

  114. Alipour M, Nabavi SM, Arab L, Vosough M, Pakdaman H, Ehsani E et al (2019) Stem cell therapy in Alzheimer’s disease: possible benefits and limiting drawbacks. Mol Biol Rep 46(1):1425–1446

    Article  PubMed  CAS  Google Scholar 

  115. Tricco AC, Ashoor HM, Soobiah C, Rios P, Veroniki AA, Hamid JS et al (2018) Comparative effectiveness and safety of cognitive enhancers for treating Alzheimer’s disease: systematic review and network metaanalysis. J Am Geriatr Soc 66(1):170–178

    Article  PubMed  Google Scholar 

  116. Matthews D, Ritter A, Thomas R, Andrews R, Lukic A, Revta C et al (2017) Rasagiline effects on glucose metabolism, cognition, and tau in Alzheimer's dementia. Alzheimers Dement Transl Res Clin Interv 7

Download references

Acknowledgements

The research protocol was approved and supported by Student Research Committee, Tabriz University of Medical Sciences (grant number: 66147).

Funding

This study was supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 66147).

Author information

Authors and Affiliations

Authors

Contributions

RM, ER-G: Investigation; Data curation; Project administration; Methodology; Writing—Original draft; Funding acquisition; SS-S, AN*: Conceptualization; Methodology; Visualization; Investigation; Supervision; Writing—Review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amirreza Naseri.

Ethics declarations

Ethical Approval

The Ethics committee of Tabriz University of Medical Science reviewed and approved the study protocol, according to the Declaration of Helsinki (Ethics code: IR.TBZMED.VCR.REC.1400.313).

Informed consent, human rights, consent to publication

Not applicable.

Conflict of interest

None declared.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidazar, R., Rezazadeh-Gavgani, E., Sadigh-Eteghad, S. et al. Pharmacotherapy of Alzheimer’s disease: an overview of systematic reviews. Eur J Clin Pharmacol 78, 1567–1587 (2022). https://doi.org/10.1007/s00228-022-03363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-022-03363-6

Keywords

Navigation