Skip to main content
Log in

Strategies to prevent drug incompatibility during simultaneous multi-drug infusion in intensive care units: a literature review

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Drug protocols in intensive care units may require the concomitant administration of many drugs as patients’ venous accesses are often limited. A major challenge for clinicians is to limit the risk of simultaneously infusing incompatible drugs. Incompatibilities can lead to the formation of particles and inactivation of drugs, whose consequences on the body have already been indicated. Our objective was to assess current strategies to counter the risk of incompatible infusions and control the resulting clinical consequences.

Methods

This review was independently conducted by three investigators in respect of the PRISMA statement. Three online databases were consulted. Full-text articles, notes, or letters written in English or French, published or in press between the 1990s and the end of February 2020, with clinical study design, were eligible. Parameters of interest were mainly number and size of particles, and a number of observed/avoided incompatibilities.

Results

All in all, 382 articles were screened, 17 meeting all the acceptance criteria. The strategies outlined and assessed were filtration, the use of multi-lumen devices, the purging of infusion lines, incompatibility tables and databases, and the use of standard operating procedures.

Conclusion

Although many strategies have been developed in recent years to address drug incompatibility risks, clinical data is still lacking. All studies with in vitro design were excluded although some current innovative strategies, like niosomes, should be considered and studied by means of clinical data in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data analysed during this study is included in this manuscript.

References

  1. Nouvel M, Lepape A (2015) Administration des médicaments par voie parentérale : incompatibilités médicamenteuses physicochimiques. Le Congrès Infirmiers Infirmier(e)s de Réanimation 2015

  2. Langille SE (2013) Particulate matter in injectable drug products. PDA J Pharm Sci Technol 67:186–200. https://doi.org/10.5731/pdajpst.2013.00922

    Article  CAS  PubMed  Google Scholar 

  3. European Pharmacopeia Commission (2020) 2.9.19 Particulate contamination: sub-visible particles. In: Pharmacopoeia, 10th ed. https://www.edqm.eu. Accessed 24 August 2020

  4. The United States Pharmacopeia - National Formulary (2012) 788: particulate matters in injections. In: The United States Pharmacopoeia - USP 35-NF 30. https://www.uspnf.com/official-text/revision-bulletins/particulate-matter-injections/. Accessed 24 August 2020

  5. European Pharmacopeia Commission (2020) 7. Dosage forms: parenteral preparations. In: Pharmacopoeia, 10th ed. https://pheur-edqm-eu.ressources-electroniques.univ-lille.fr/app/10-2/content/10-2/0520E.htm. Accessed 24 August 2020

  6. Ilium L, Davis SS, Wilson CG, Thomas NW, Frier M, Hardy JG (1982) Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int J Pharm 12:135–146. https://doi.org/10.1016/0378-5173(82)90113-2

    Article  Google Scholar 

  7. Bradley JS, Wassel RT, Lee L, Nambiar S (2009) Intravenous ceftriaxone and calcium in the neonate: assessing the risk for cardiopulmonary adverse events. Pediatrics 123:e609–e613. https://doi.org/10.1542/peds.2008-3080

    Article  PubMed  Google Scholar 

  8. Reedy JS, Kuhlman JE, Voytovich M (1999) Microvascular pulmonary emboli secondary to precipitated crystals in a patient receiving total parenteral nutrition: a case report and description of the high-resolution CT findings. Chest 115:892–895. https://doi.org/10.1378/chest.115.3.892

    Article  CAS  PubMed  Google Scholar 

  9. McNearney T, Bajaj C, Boyars M, Cottingham J, Haque A (2003) Total parenteral nutrition associated crystalline precipitates resulting in pulmonary artery occlusions and alveolar granulomas. Dig Dis Sci 48:1352–1354. https://doi.org/10.1023/a:1024119512162

    Article  CAS  PubMed  Google Scholar 

  10. Falchuk KH, Peterson L, McNeil BJ (1985) Microparticulate-induced phlebitis. Its prevention by in-line filtration. N Engl J Med 312:78–82. https://doi.org/10.1056/NEJM198501103120203

    Article  CAS  PubMed  Google Scholar 

  11. Knowles JB, Cusson G, Smith M, Sitrin MD (1989) Pulmonary deposition of calcium phosphate crystals as a complication of home total parenteral nutrition. JPEN J Parenter Enteral Nutr 13:209–213. https://doi.org/10.1177/0148607189013002209

    Article  CAS  PubMed  Google Scholar 

  12. Jack T, Boehne M, Brent BE, Hoy L, Köditz H, Wessel A, Sasse M (2012) In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med 38:1008–1016. https://doi.org/10.1007/s00134-012-2539-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Boehne M, Jack T, Köditz H, Seidemann K, Schmidt F, Abura M, Bertram H, Sasse M (2013) In-line filtration minimizes organ dysfunction: new aspects from a prospective, randomized, controlled trial. BMC Pediatr 13:21. https://doi.org/10.1186/1471-2431-13-21

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sasse M, Dziuba F, Jack T, Köditz H, Kaussen T, Bertram H, Beerbaum P, Boehne M (2015) In-line filtration decreases systemic inflammatory response syndrome, renal and hematologic dysfunction in pediatric cardiac intensive care patients. Pediatr Cardiol 36:1270–1278. https://doi.org/10.1007/s00246-015-1157-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lehr H-A, Brunner J, Rangoonwala R, Kirkpatrick CJ (2002) Particulate matter contamination of intravenous antibiotics aggravates loss of functional capillary density in postischemic striated muscle. Am J Respir Crit Care Med 165:514–520. https://doi.org/10.1164/ajrccm.165.4.2108033

    Article  PubMed  Google Scholar 

  16. Hill SE, Heldman LS, Goo ED, Whippo PE, Perkinson JC (1996) Fatal microvascular pulmonary emboli from precipitation of a total nutrient admixture solution. JPEN J Parenter Enteral Nutr 20:81–87. https://doi.org/10.1177/014860719602000181

    Article  CAS  PubMed  Google Scholar 

  17. Worthington P, Gura KM, Kraft MD, Nishikawa R, Guenter P, Sacks GS, the ASPEN PN Safety Committee (2020) Update on the use of filters for parenteral nutrition: an ASPEN position paper. Nutr Clin Pract 36:29–39. https://doi.org/10.1002/ncp.10587

    Article  PubMed  Google Scholar 

  18. Bethune K, Allwood M, Grainger C, Wormleighton C, British Pharmaceutical Nutrition Group Working Party (2001) Use of filters during the preparation and administration of parenteral nutrition: position paper and guidelines prepared by a British pharmaceutical nutrition group working party. Nutrition 17:403–408. https://doi.org/10.1016/s0899-9007(01)00536-6

    Article  CAS  PubMed  Google Scholar 

  19. Mirtallo J, Canada T, Johnson D, Kumpf V, Petersen C, Sacks G, Seres D, Guenter P (2004) Safe practices for parenteral nutrition. JPEN J Parenter Enteral Nutr 28:S39–S70. https://doi.org/10.1177/0148607104028006s39

    Article  PubMed  Google Scholar 

  20. Koletzko B, Goulet O, Hunt J et al (2005) 1. Guidelines on paediatric parenteral nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 41(Suppl 2):S1–S87. https://doi.org/10.1097/01.mpg.0000181841.07090.f4

    Article  PubMed  Google Scholar 

  21. Boullata JI, Gilbert K, Sacks G, Labossiere RJ, Crill C, Goday P, Kumpf VJ, Mattox TW, Plogsted S, Holcombe B, American Society for Parenteral and Enteral Nutrition, Malone A, Teitelbaum D, Andris DA, Ayers P, Baroccas A, Compher C, Ireton-Jones C, Jaksic T, Robinson LA, van Way CW III, Compher C, Allen N, Boullata JI, Braunschweig CL, George DE, Simpser E, Worthington PA (2014) A.S.P.E.N. clinical guidelines: parenteral nutrition ordering, order review, compounding, labeling, and dispensing. JPEN J Parenter Enteral Nutr 38:334–377. https://doi.org/10.1177/0148607114521833

    Article  PubMed  Google Scholar 

  22. P A, S A, J B, et al (2014) A.S.P.E.N. parenteral nutrition safety consensus recommendations. In: JPEN. Journal of parenteral and enteral nutrition. https://pubmed.ncbi.nlm.nih.gov/24280129/. Accessed 11 Jan 2021

  23. Gorski LA (2017) The 2016 infusion therapy standards of practice. Home Healthcare Now 35:10–18. https://doi.org/10.1097/NHH.0000000000000481

    Article  PubMed  Google Scholar 

  24. Cohen MR, Smetzer JL (2016) Selected medication safety risks to manage in 2016–part i intravenous fat emulsion needs a filter. Hosp Pharm 51:353–357. https://doi.org/10.1310/hpj5105-353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McKinnon BT (1996) FDA safety alert: hazards of precipitation associated with parenteral nutrition. Nutr Clin Pract 11:59–65. https://doi.org/10.1177/011542659601100259

    Article  CAS  PubMed  Google Scholar 

  26. (1998) Safe practices for parenteral nutrition formulations. National Advisory Group on Standards and Practice Guidelines for Parenteral Nutrition. JPEN J Parenter Enteral Nutr 22:49–66

  27. Foinard A, Décaudin B, Barthélémy C, Debaene B, Odou P (2013) The impact of multilumen infusion devices on the occurrence of known physical drug incompatibility: a controlled in vitro study. Anesth Analg 116:101–106. https://doi.org/10.1213/ANE.0b013e31826f5e02

    Article  PubMed  Google Scholar 

  28. Benlabed M, Perez M, Gaudy R, Genay S, Lannoy D, Barthélémy C, Odou P, Lebuffe G, Décaudin B (2019) Clinical implications of intravenous drug incompatibilities in critically ill patients. Anaesth Crit Care Pain Med 38:173–180. https://doi.org/10.1016/j.accpm.2018.04.003

    Article  PubMed  Google Scholar 

  29. Flamein F, Storme L, Maiguy-Foinard A, Perez M, Décaudin B, Masse M, Genay S, Odou P (2017) Avoid drug incompatibilities: clinical context in neonatal intensive care unit (NICU). Pharmaceut Technol Hospital Pharm 2:71–78. https://doi.org/10.1515/pthp-2017-0009

    Article  Google Scholar 

  30. Castells Lao G, Rodríguez Reyes M, Roura Turet J, Prat Dot M, Soy Muner D, López Cabezas C (2020) Compatibility of drugs administered as Y-site infusion in intensive care units: a systematic review. Med Intensiva (English Edition) 44:80–87. https://doi.org/10.1016/j.medine.2018.08.008

    Article  CAS  Google Scholar 

  31. Leighton H (1994) Maintaining the patency of transduced arterial and venous lines using 0.9% sodium chloride. Inten Crit Care Nurs 10:23–25. https://doi.org/10.1016/0964-3397(94)90075-2

    Article  CAS  Google Scholar 

  32. LeDuc K (1997) Efficacy of normal saline solution versus heparin solution for maintaining patency of peripheral intravenous catheters in children. J Emerg Nurs 23:306–309. https://doi.org/10.1016/S0099-1767(97)90216-6

    Article  CAS  PubMed  Google Scholar 

  33. Camut A, Noirez V, Gustin B, Khalife A (2007) Amélioration des pratiques d’administration des antibiotiques injectables : proposition et évaluation d’un guide de compatibilité physico-chimique. J Pharm Clin 26:143–150. https://doi.org/10.1684/jpc.2007.0059

    Article  Google Scholar 

  34. Bertsche T, Mayer Y, Stahl R, Hoppe-Tichy T, Encke J, Haefeli WE (2008) Prevention of intravenous drug incompatibilities in an intensive care unit. Am J Health Syst Pharm 65:1834–1840. https://doi.org/10.2146/ajhp070633

    Article  PubMed  Google Scholar 

  35. Nemec K, Kopelent-Frank H, Greif R (2008) Standardization of infusion solutions to reduce the risk of incompatibility. Am J Health Syst Pharm 65:1648–1654. https://doi.org/10.2146/ajhp070471

    Article  PubMed  Google Scholar 

  36. Bertsche T, Münk L, Mayer Y, Stahl R, Hoppe-Tichy T, Encke J et al (2009) One-year follow-up on procedure to prevent i.v. drug incompatibilities in an intensive care unit. Am J Health Syst Pharm 66:1250–1253. https://doi.org/10.2146/ajhp090070

    Article  PubMed  Google Scholar 

  37. Bertsche T, Veith C, Stahl A, Hoppe-Tichy T, Meyer FJ, Katus HA, Haefeli WE (2010) A purging procedure for pantoprazole and 4-lumen catheters to prevent IV drug incompatibilities. Pharm World Sci 32:663–669. https://doi.org/10.1007/s11096-010-9422-9

    Article  PubMed  Google Scholar 

  38. De Giorgi I, Guignard B, Fonzo-Christe C, Bonnabry P (2010) Evaluation of tools to prevent drug incompatibilities in paediatric and neonatal intensive care units. Pharm World Sci 32:520–529. https://doi.org/10.1007/s11096-010-9403-z

    Article  PubMed  Google Scholar 

  39. Isemann B, Sorrels R, Akinbi H (2012) Effect of heparin and other factors associated with complications of peripherally inserted central venous catheters in neonates. J Perinatol 32:856–860. https://doi.org/10.1038/jp.2011.205

    Article  CAS  PubMed  Google Scholar 

  40. Häni C, Vonbach P, Fonzo-Christe C, Russmann S, Cannizzaro V, Niedrig DF (2019) Evaluation of incompatible coadministration of continuous intravenous infusions in a pediatric/neonatal intensive care unit. J Pediatr Pharmacol Therapeutics 24:479–488. https://doi.org/10.5863/1551-6776-24.6.479

    Article  Google Scholar 

  41. van Lingen RA, Baerts W, Marquering ACM, Ruijs GJHM (2004) The use of in-line intravenous filters in sick newborn infants. Acta Paediatr 93:658–662. https://doi.org/10.1111/j.1651-2227.2004.tb02993.x

    Article  PubMed  Google Scholar 

  42. van den Hoogen A, Krediet TG, Uiterwaal CSPM, Bolenius JFGA, Gerards LJ, Fleer A (2006) In-line filters in central venous catheters in a neonatal intensive care unit. J Perinat Med 34:71–74. https://doi.org/10.1515/JPM.2006.009

    Article  PubMed  Google Scholar 

  43. Jack T, Brent BE, Boehne M, Müller M, Sewald K, Braun A, Wessel A, Sasse M (2010) Analysis of particulate contaminations of infusion solutions in a pediatric intensive care unit. Intensive Care Med 36:707–711. https://doi.org/10.1007/s00134-010-1775-y

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gradwohl-Matis I, Brunauer A, Dankl D, Wirthel E, Meburger I, Bayer A, Mandl M, Dünser MW, Grander W (2015) Influence of in-line microfilters on systemic inflammation in adult critically ill patients: a prospective, randomized, controlled open-label trial. Ann Intensive Care 5:36. https://doi.org/10.1186/s13613-015-0080-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmitt E, Meybohm P, Herrmann E, Ammersbach K, Endres R, Lindau S, Helmer P, Zacharowski K, Neb H (2019) In-line filtration of intravenous infusion may reduce organ dysfunction of adult critical patients. Crit Care 23:373. https://doi.org/10.1186/s13054-019-2618-z

    Article  PubMed  PubMed Central  Google Scholar 

  46. Handbook on Injectable Drugs (2018). 20th ed. ASHP

  47. IBM Micromedex (2020). https://www.micromedexsolutions.com/home/dispatch. Accessed 24 August 2020

  48. CNHIM. Thériaque (2020). http://www.theriaque.org/apps/contenu/accueil.php/; 2020. Accessed 24 August 2020

  49. Stabilis 4.0. https://www.stabilis.org/; 2020. Accessed 24 August 2020

  50. Maison O, Tardy C, Cabelguenne D, Parat S, Ducastelle S, Piriou V, Lepape A, Lalande L (2019) Drug incompatibilities in intravenous therapy: evaluation and proposition of preventive tools in intensive care and hematology units. Eur J Clin Pharmacol 75:179–187. https://doi.org/10.1007/s00228-018-2602-6

    Article  CAS  PubMed  Google Scholar 

  51. Sicard G, Venton G, Farnault L, Costello R, Fanciullino R, Gensollen S (2019) Mise en place d’un outil d’aide à la détection des interactions physico-chimiques en Y des médicaments injectables : analyse rétrospective des prescriptions dans un service d’hématologie. Le Pharmacien Hospitalier et Clinicien 54:348–355. https://doi.org/10.1016/j.phclin.2019.06.002

    Article  Google Scholar 

  52. Manrique-Rodríguez S, Sánchez-Galindo A, Mora-García T, Fernandez-Llamazares CM, Echarri-Martínez L, López-Herce J, Rodríguez-Gómez M, Bellón-Cano JM, Sanjuro-Sáez M (2012) Development of a compatibility chart for intravenous Y-site drug administration in a pediatric intensive care unit. J Infus Nurs 35:109–114. https://doi.org/10.1097/NAN.0b013e3182425b34

    Article  PubMed  Google Scholar 

  53. Vijayakumar A, Sharon EV, Teena J, Nobil S, Nazeer I (2014) A clinical study on drug-related problems associated with intravenous drug administration. J Basic Clin Pharm 5:49–53. https://doi.org/10.4103/0976-0105.134984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bourhis M, Tortolano L, Lalioui S, Chardonnet F, Dufour C, Gaudin A, Valteau-Couanet D, Lemare F (2017) Évaluation et optimisation des pratiques de perfusion en oncologie pédiatrique. Le Pharmacien Hospitalier et Clinicien 52:355–360. https://doi.org/10.1016/j.phclin.2017.05.003

    Article  Google Scholar 

  55. Huddleston J, Hay L, Everett JA (2000) Patient-specific compatibility tables for the pediatric intensive care unit. Am J Health Syst Pharm 57:2284–2285. https://doi.org/10.1093/ajhp/57.24.2284

    Article  CAS  PubMed  Google Scholar 

  56. Neininger MP, Buchholz P, Kiess W, Siekmeyer M, Bertsche A, Bertsche T (2018) Incompatibilities in paediatric intensive care - pitfalls in drug information. info: https://doi.org/10.1691/ph.2018.8585

  57. Suzuki S, Mochizuki N, Iwamoto AI, Yoshida M, Murakami A, Ikegawa K, Yamaguchi M, Vigneron J (2018) Comparative evaluation of a website for drug incompatibility: Stabilis, Trissel’s Handbook and the currently available tools in Japan. Eur J Oncol Pharma 1:e0001. https://doi.org/10.1097/OP9.0000000000000001

    Article  Google Scholar 

  58. Trissel LA (1996) Everything in a compatibility study is important. Am J Health Syst Pharm 53:2990–2990. https://doi.org/10.1093/ajhp/53.24.2990

    Article  CAS  PubMed  Google Scholar 

  59. Li J, Xu M, Dong H, Zhang Z, Kang Y (2012) Drug incompatibility checking system on mobile platform. 2012 IEEE International Conference on Information and Automation, p. 568–71. https://doi.org/10.1109/ICInfA.2012.6246877

  60. Collins JL, Lutz RJ (1991) In vitro study of simultaneous infusion of incompatible drugs in multilumen catheters. Heart Lung 20:271–277

    CAS  PubMed  Google Scholar 

  61. Perez M, Décaudin B, Foinard A, Barthélémy C, Debaene B, Lebuffe G, Odou P (2015) Compatibility of medications during multi-infusion therapy: a controlled in vitro study on a multilumen infusion device. Anaesth Crit Care Pain Med 34:83–88. https://doi.org/10.1016/j.accpm.2014.06.003

    Article  PubMed  Google Scholar 

  62. Perez M, Décaudin B, Abou Chahla W, Nelken B, Barthélémy C, Lebuffe G, Odou P (2015) In vitro analysis of overall particulate contamination exposure during multidrug IV therapy: impact of infusion sets. Pediatr Blood Cancer 62:1042–1047. https://doi.org/10.1002/pbc.25442

    Article  CAS  PubMed  Google Scholar 

  63. Foinard A, Décaudin B, Barthélémy C, Debaene B, Odou P (2013) Prevention of drug delivery disturbances during continuous intravenous infusion: an in vitro study on a new multi-lumen infusion access device. Ann Fr Anesth Reanim 32:e107–e112. https://doi.org/10.1016/j.annfar.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  64. Décaudin B, Dewulf S, Lannoy D, Simon N, Secq A, Barthélémy C, Debaene B, Odou P (2009) Impact of multiaccess infusion devices on in vitro drug delivery during multi-infusion therapy. Anesth Analg 109:1147–1155. https://doi.org/10.1213/ane.0b013e3181ae06e3

    Article  CAS  PubMed  Google Scholar 

  65. Templeton A, Schlegel M, Fleisch F, Rettenmund G, Schöbi B, Henz S, Eich G (2008) Multilumen central venous catheters increase risk for catheter-related bloodstream infection: prospective surveillance study. Infection 36:322–327. https://doi.org/10.1007/s15010-008-7314-x

    Article  CAS  PubMed  Google Scholar 

  66. Dezfulian C, Lavelle J, Nallamothu BK, Kaufman SR, Saint S (2003) Rates of infection for single-lumen versus multilumen central venous catheters: a meta-analysis. Crit Care Med 31:2385–2390. https://doi.org/10.1097/01.CCM.0000084843.31852.01

    Article  PubMed  Google Scholar 

  67. Bruning EJ (1955) Pathogenesis and significance of intra-arterial foreign body embolisms of the lung in children. Virchows Arch Pathol Anat Physiol Klin Med 327:460–479. https://doi.org/10.1007/BF00955940

    Article  CAS  PubMed  Google Scholar 

  68. Garvan JM, Gunner BW (1964) The harmful effects of particles in intravenous fluids. Med J Aust 2:1–6

    Article  CAS  Google Scholar 

  69. Comité Technique national des Infections Nosocomiales (1999) 100 recommandations pour la surveillance et la prévention des infections nosocomiales 1999

  70. Ball PA (2003) Intravenous in-line filters: filtering the evidence. Curr Opin Clin Nutr Metab Care 6:319–325. https://doi.org/10.1097/01.mco.0000068969.34812.5d

    Article  PubMed  Google Scholar 

  71. Foster J, Richards R, Showell M (2006) Intravenous in-line filters for preventing morbidity and mortality in neonates. Cochrane Database Syst Rev 2006:CD005248. https://doi.org/10.1002/14651858.CD005248.pub2

    Article  Google Scholar 

  72. Virlouvet A-L, Pansiot J, Toumazi A, Colella M, Capewell A, Guerriero E, Storme T, Rioualen S, Bourmaud A, Biran V, Baud O (2020) In-line filtration in very preterm neonates: a randomized controlled trial. Sci Rep 10:5003. https://doi.org/10.1038/s41598-020-61815-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hellinger A, Piotrowski J, Konerding MA, Burchard W, Doetsch N, Peitgen K, Erhard J, Reidemeister J (1997) Impact of particulate contamination in crystalloid cardioplegic solutions: studies by scanning and transmission electron microscopy. Thorac Cardiovasc Surg 45:20–26. https://doi.org/10.1055/s-2007-1013678

    Article  CAS  PubMed  Google Scholar 

  74. Munsch C, Rosenfeldt F, Chang V, Newman M, Davis B (1991) Absence of particle-induced coronary vasoconstriction during cardioplegic infusion: is it desirable to use a microfilter in the infusion line? J Thorac Cardiovasc Surg 101:473–480

    Article  CAS  Google Scholar 

  75. Perez M, Décaudin B, Chahla WA, Nelken B, Storme L, Masse M et al (2018) Effectiveness of in-line filters to completely remove particulate contamination during a pediatric multidrug infusion protocol. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-25602-6

    Article  CAS  Google Scholar 

  76. Kuramoto K, Shoji T, Nakagawa Y (2006) Usefulness of the final filter of the IV infusion set in intravenous administration of drugs--contamination of injection preparations by insoluble microparticles and its causes. Yakugaku Zasshi 126:289–295. https://doi.org/10.1248/yakushi.126.289

    Article  CAS  PubMed  Google Scholar 

  77. Robinson LA, Braimbridge MV, Hearse DJ (1984) The potential hazard of particulate contamination of cardioplegic solutions. J Thorac Cardiovasc Surg 87:48–58

    Article  CAS  Google Scholar 

  78. Mass B, Huber C, Krämer I (1996) Plasticizer extraction of Taxol infusion solution from various infusion devices. Pharm World Sci 18:78–82. https://doi.org/10.1007/BF00579710

    Article  CAS  PubMed  Google Scholar 

  79. Masse M, Genay S, Martin Mena A, Carta N, Lannoy D, Barthélémy C, Décaudin B, Odou P (2020) Evaluation of the stability of vancomycin solutions at concentrations used in clinical services. Eur J Hosp Pharm 27:e87–e92. https://doi.org/10.1136/ejhpharm-2019-002076

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pardeshi NN, Qi W, Dahl K, Caplan L, Carpenter JF (2017) Microparticles and nanoparticles delivered in intravenous saline and in an intravenous solution of a therapeutic antibody product. J Pharm Sci 106:511–520. https://doi.org/10.1016/j.xphs.2016.09.028

    Article  CAS  PubMed  Google Scholar 

  81. Hirakawa M, Makino K, Nakashima K, Kataoka Y, Oishi R (1999) Evaluation of the in-line filters for the intravenous infusion of amphotericin B fluid. J Clin Pharm Ther 24:387–392. https://doi.org/10.1046/j.1365-2710.1999.00242.x

    Article  CAS  PubMed  Google Scholar 

  82. Brotschi B, Grass B, Weiss M, Doell C, Bernet V (2012) In-line filter included into the syringe infusion pump assembly reduces flow irregularities. Intensive Care Med 38:518–522. https://doi.org/10.1007/s00134-011-2452-5

    Article  CAS  PubMed  Google Scholar 

  83. Brent BE, Jack T, Sasse M (2007) In-line filtration of intravenous fluids retains ’spearhead’-shaped particles from the vascular system after open-heart surgery. Eur Heart J 28:1192–1192. https://doi.org/10.1093/eurheartj/ehl398

    Article  PubMed  Google Scholar 

  84. Foinard A, Décaudin B, Barthélémy C, Debaene B, Odou P (2012) Impact of physical incompatibility on drug mass flow rates: example of furosemide-midazolam incompatibility. Ann Intensive Care 2:28. https://doi.org/10.1186/2110-5820-2-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gasch J, Leopold CS, Knoth H (2011) Drug retention by inline filters – effect of positively charged polyethersulfone filter membranes on drug solutions with low concentration. Eur J Pharm Sci 44:49–56. https://doi.org/10.1016/j.ejps.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  86. Böhrer H, Zhang CH, Krier C (1991) Decrease in the concentration of tobramycin, vancomycin and phenobarbital in administration with infusion filter. Infusionstherapie 18:96–100

    PubMed  Google Scholar 

  87. Huber RC, Riffkin C (1975) In line final filters for removing particles from amphotericin B infusions. Am J Hosp Pharm 32:173–176

    CAS  PubMed  Google Scholar 

  88. De Muynck C, Colardyn F, Remon JP (1990) The sorption of isosorbide-5-mononitrate to intravenous delivery systems. J Pharm Pharmacol 42:433–434. https://doi.org/10.1111/j.2042-7158.1990.tb06585.x

    Article  PubMed  Google Scholar 

  89. Sendo T, Adachi K, Otsubo K, Aoyama T, Oishi R (1996) In-line filter occlusion during intravenous delivery of injectable menatetrenone (vitamin K2). J Clin Pharm Ther 21:9–13. https://doi.org/10.1046/j.1365-2710.1996.88875888.x

    Article  CAS  PubMed  Google Scholar 

  90. Meyer K, Santarossa M, Danziger LH, Wenzler E (2017) Compatibility of ceftazidime-avibactam, ceftolozane-tazobactam, and piperacillin-tazobactam with vancomycin in dextrose 5% in water. Hosp Pharm 52:221–228. https://doi.org/10.1310/hpj5203-221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vogel Kahmann I, Bürki R, Denzler U, Höfler A, Schmid B, Splisgardt H (2003) Incompatibility reactions in the intensive care unit. [Five years after the implementation of a simple “colour code system”]. Anaesthesist 52:409–412. https://doi.org/10.1007/s00101-003-0481-3

    Article  CAS  PubMed  Google Scholar 

  92. Mohamed HB, El-Shanawany SM, Hamad MA, Elsabahy M (2017) Niosomes: a strategy toward prevention of clinically significant drug incompatibilities. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-06955-w

    Article  CAS  Google Scholar 

  93. Nanomedicine: a new paradigm to overcome drug incompatibilities - Abdelkader - 2020 - Journal of Pharmacy and Pharmacology - Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1111/jphp.13292. Accessed 11 Jan 2021

  94. Gwee A, Cranswick N, McMullan B, Perkins E, Bolisetty S, Gardiner K, Daley A, Ward M, Chiletti R, Donath S, Hunt R, Curtis N (2019) Continuous versus intermittent vancomycin infusions in infants: a randomized controlled trial. Pediatrics 143:143. https://doi.org/10.1542/peds.2018-2179

    Article  Google Scholar 

  95. Ma NH, Walker SAN, Elligsen M, Kiss A, Palmay L, Ho G, Powis J, Bansal V, Leis JA (2020) Retrospective multicentre matched cohort study comparing safety and efficacy outcomes of intermittent-infusion versus continuous-infusion vancomycin. J Antimicrob Chemother 75:1038–1046. https://doi.org/10.1093/jac/dkz531

    Article  CAS  PubMed  Google Scholar 

  96. Doesburg F, Oelen R, Renes MH, Bult W, Touw DJ, Nijsten MW (2020) Towards more efficient use of intravenous lumens in multi-infusion settings: development and evaluation of a multiplex infusion scheduling algorithm. BMC Med Inform Decis Mak 20:206. https://doi.org/10.1186/s12911-020-01231-w

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Alexandra Tavernier (M.A., University of Glasgow, Professeur Agrégée, France) for English language and editing assistance.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. L.N. wrote the manuscript. B.D., S.G., and A.M.M. contributed to the supervision, the methodology, the validation, the reviewing, and editing. L.N., S.G., and A.M.M. performed the literature searches and the data analysis. P.O. and G.L. contributed to critically revise the work and editing.

Corresponding author

Correspondence to Laura Négrier.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 17 kb)

ESM 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Négrier, L., Martin Mena, A., Lebuffe, G. et al. Strategies to prevent drug incompatibility during simultaneous multi-drug infusion in intensive care units: a literature review. Eur J Clin Pharmacol 77, 1309–1321 (2021). https://doi.org/10.1007/s00228-021-03112-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-021-03112-1

Keywords

Navigation