Skip to main content

Advertisement

Log in

Predisposing factors for the development of diabetic ketoacidosis with lower than anticipated glucose levels in type 2 diabetes patients on SGLT2-inhibitors: a review

European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

SGLT2-inhibitors (SGLT-2i) have been linked to the risk of potential life-threatening diabetic ketoacidosis (DKA). The U.S. Food and Drug Administration and the European Medicines Agency issued warnings in 2015 and 2016 respectively on the predisposing factors to the development of DKA in individuals on an SGLT2i. New predisposing factors to DKA are still being discovered with the use of SGLT-2i. The list by FDA and EMA is yet to be updated. This article aims to provide a holistic list that includes the newer factors that have been implicated in the development of DKA. The overall aim is to guide physicians in prescribing this class of drugs for type 2 diabetes mellitus (T2D).

Method

A search was done using PUBMED, Google Scholar, and Directory of Open Access Journals with the following words: SGLT-2 Inhibitors AND Ketoacidosis were entered. We included articles from 2000 to 2020, those in English, those involving any of the approved SGLT2i medications in T2D patients, and studies that focused on DKA linked to SGLT-2i. These articles were reviewed, and relevant data extracted and compiled.

Results and conclusion

The review has revealed that predisposing factors include (excess) alcohol consumption, female gender, starvation due to illness or fasting, withholding the use of SGLT2i for less than 48 h peri-operatively, and the existence of a variations in the expression of SGLT2 receptors. Patients should be advised on “sick day rules,” and if a patient becomes unwell while on an SGLT2i, they should be advised to withhold the medication for the duration of the intercurrent illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Libman I and S. Arselanian S. Type 2 diabetes in childhood: the American perspective. Horm Res .2003;59(suppl 1):69–76

  2. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet. 389:2239–2251

    Article  CAS  Google Scholar 

  3. Zheng Y, Ley S, Hu F. Global etiology and epidemiology of type 2 diabetes mellitus and its complications. Macmillan Publishers Limited, part of Springer Nature 2018; Vol. 14, pp. 88–98

  4. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990 2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 385:117–171

  5. Bruno G, Runzo C, Cavallo-Perin P, Merletti F, Rivetti M, Pinach S, Novelli G, Trovati M, Cerutti F, Pagano G, Piedmont Study Group for Diabetes Epidemiology (2005) Incidence of type 1 and type 2 diabetes in adults aged 30-49 years: the population-based registry in the province of Turin, Italy. Diabetes Care 28(11):2613–2619. https://doi.org/10.2337/diacare.28.11.2613

    Article  PubMed  Google Scholar 

  6. Zimmet PZ (2017) Diabetes and its drivers: the largest epidemic in human history? Clin Diabetes Endocrinol 3:1

    Article  Google Scholar 

  7. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, Sasapu A, Beebe A, Patil N, Musham CK, Lohani GP, Mirza W (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol 8:6. https://doi.org/10.3389/fendo.2017.00006

    Article  Google Scholar 

  8. Abdul-Ghani MA, DeFronzo RA. Lowering plasma glucose concentration by inhibiting renal sodium-glucose cotransport. J InternMed. 2014; 276:352–363

  9. FDA approves Invokana to treat type 2 diabetes. US Food and Drug Administration Press release. 2013 March, 29.Available from www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm345848.htm

  10. Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, Thomson SC, Koepsell H, Vallon V (2014) Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306(2):F188–F193

    Article  CAS  Google Scholar 

  11. Ferrannini E, Solini A (2012) SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat Rev Endocrinol 8:495–450

    Article  CAS  Google Scholar 

  12. Girard J. Rôle des reins dans l’homéostasie du glucose. Implication du cotransporteur sodium–glucose SGLT2 dans le traitement du diabète [Role of the kidneys in glucose homeostasis. Implication of sodium-glucose cotransporter 2 (SGLT2) in diabetes mellitus treatment]. Nephrol Ther. 2017 Apr;13 Suppl 1: S35-S41. French. doi: https://doi.org/10.1016/j.nephro.2017.01.006

  13. Vallon V, Thomson SC (2012) Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 74(18):351–375

    Article  CAS  Google Scholar 

  14. Washburn WN, Poucher SM (2013) Differentiating sodium-glucose cotransporter-2 inhibitors in development for the treatment of type 2 diabetes mellitus. Expert Opin Investig Drugs 22(19):463–486

    Article  CAS  Google Scholar 

  15. FORXIGA™ (dapagliflozin) now approved in European Union for treatment of type 2 diabetes. 2012 November. Available from: https:// www.astrazeneca.com/media-centre/press-releases/2012/FORXIGAdapagliflozin-now-approved-in-European-Union-for-treatment-of-type2-diabetes-14112012

  16. Reddy R, Inzucchi S (2016) SGLT2 inhibitors in the management of type 2 diabetes. Endocrine. 53(2):364–372

    Article  Google Scholar 

  17. Majewski C, Bakris G (2015) Blood pressure reduction: an added benefit of sodium–glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care 48:429–430

    Article  Google Scholar 

  18. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Furtado RHM, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Sabatine MS (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 393:31–39

    Article  CAS  Google Scholar 

  19. Wu JH, Foote C, Blomster J, Toyama T, Perkovic V, Sundstrom J et al (2016) Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 4:411–419

    Article  CAS  Google Scholar 

  20. Wilding JP, Norwood P, T'joen C, Bastien A, List JF, Fiedorek FT (2009) A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care 32(9):1656–1662. https://doi.org/10.2337/dc09-0517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kern M, Klöting N, Mark M, Mayoux E, Klein T, Blüher M (2016) The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin. Metabolism. 65(2):114–123. https://doi.org/10.1016/j.metabol.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  22. Vella S, Buetow L, Royle P, Livingstone S, Colhoun HM, Petrie JR (2010) The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia. 53(5):809–882

    Article  CAS  Google Scholar 

  23. Scheen A (2015) Pharmacodynamics, efficacy and safety of sodium–glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 75:33–59

    Article  CAS  Google Scholar 

  24. Basu D, Huggins LA, Scerbo D, Obunike J, Mullick AE, Rothenberg PL, Di Prospero NA, Eckel RH, Goldberg IJ (2018) Mechanism of increased LDL (low-density lipoprotein) and decreased triglycerides with SGLT2 (sodium-glucose cotransporter 2) inhibition. Arterioscler Thromb Vasc Biol 38(9):2207–2216. https://doi.org/10.1161/ATVBAHA.118.311339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenstock J, Ferrannini E (2015 Sep) Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 38(9):1638–1642. https://doi.org/10.2337/dc15-1380

    Article  CAS  PubMed  Google Scholar 

  26. US Food and Drug Administration. FDA drug safety communication: FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections. Available from: https://www.fda.gov/Drugs/DrugSafety/ucm475463.htm. Accessed April 28, 2017

  27. EMA confirms recommendations to minimize ketoacidosis risk with SGLT2 inhibitors for diabetes. 2019 March 10.Available from https://www.ema.europa.eu/en/medicines/human/referrals/sglt2-inhibitors

  28. Goldenberg RM, Berard LD, Cheng AYY, Gilbert JD, Verma S, Woo VC, Yale JF. SGLT2 inhibitor-associated diabetic ketoacidosis: clinical review and recommendations for prevention and diagnosis. Clin Ther. 2016;38(12):2654–2664.e1. doi: https://doi.org/10.1016/j.clinthera.2016.11.002

  29. Zhang L, Tamilia M (2018) Euglycemic diabetic ketoacidosis associated with the use of a sodium-glucose cotransporter-2 inhibitor. CMAJ 190(25):E766–E768. https://doi.org/10.1503/cmaj.171319

    Article  PubMed  PubMed Central  Google Scholar 

  30. Badwal K, Tariq T, Peirce D (2018) Dapagliflozin-associated euglycemic diabetic ketoacidosis in a patient presenting with acute pancreatitis. Case Rep Endocrinol 2018:6450563. https://doi.org/10.1155/2018/6450563

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chou YM, Seak CJ, Goh ZNL, Seak JC, Seak CK, Lin CC (2018) Euglycemic diabetic ketoacidosis caused by dapagliflozin: a case report. Medicine (Baltimore) 97(25):e11056. https://doi.org/10.1097/MD.0000000000011056

    Article  Google Scholar 

  32. Limenta M, Ho CSC, Poh JWW, Goh SY, Toh DSL (2019) Adverse drug reaction profile of SGLT2 inhibitor-associated diabetic ketosis/ketoacidosis in Singapore and their precipitating factors. Clin Drug Investig 39(7):683–690. https://doi.org/10.1007/s40261-019-00794-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lucero P, Chapela SP (2018) Euglycemic diabetic ketoacidosis in the ICU: 3 case reports and review of literature. Case Reports in Critical Care 2018:1–6

    Article  Google Scholar 

  34. Legaspi R, Narciso P (2015) Euglycemic diabetic ketoacidosis due to gastroparesis, a local experience. J Ark Med Soc 112:62–63

    PubMed  Google Scholar 

  35. Kanikarla-Marie P, Jain SK (2016) Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic Biol Med 95:268–277. https://doi.org/10.1016/j.freeradbiomed.2016.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang K, Isom R (2020) SGLT2 inhibitor-induced euglycemic diabetic ketoacidosis: a case report. Kidney Medicine 2(2):218–221. https://doi.org/10.1016/j.xkme.2019.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qiu H, Novikov A, Vallon, V. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: basic mechanisms and therapeutic perspectives. Diabetes Metab. Res. Rev. 2017; 33:https://doi.org/10.1002/dmrr.2886

  38. Lee IH, Ahn DJ (2020) Dapagliflozin-associated euglycemic diabetic ketoacidosis in a patient with type 2 diabetes mellitus: a case report. Medicine (Baltimore) 99(21):e20228. https://doi.org/10.1097/MD.0000000000020228

    Article  Google Scholar 

  39. Stephen L, Aronoff SL, Kathy Berkowitz K, Barb Shreiner B, Laura WL (2004) Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectrum 17(3):183–190. https://doi.org/10.2337/diaspect.17.3.183

    Article  Google Scholar 

  40. Rawla P, Vellipuram AR, Bandaru SS, Pradeep Raj J. Euglycemic diabetic ketoacidosis: a diagnostic and therapeutic dilemma. Endocrinol Diabetes Metab Case Rep 2017; 2017:17–0081. doi: https://doi.org/10.1530/EDM-17-0081.

  41. Rui L (2014) Energy Metabolism in the Liver. Comprehensive Physiology 4:177–197. https://doi.org/10.1002/cphy.c130024

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bteich F, Daher G, Kapoor A, Charbek E, Kamel G (2019) Post-surgical euglycemic diabetic ketoacidosis in a patient on empagliflozin in the intensive care unit. Cureus 11(4):e4496. https://doi.org/10.7759/cureus.4496

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hoffman C, Green M, Megafu O (2017) Sodium-glucose linked transporter 2 inhibitor-associated perioperative euglycaemic diabetic ketoacidosis: a case for a perioperative guideline. Anaesth Intensive Care 45(6):758

    Article  CAS  Google Scholar 

  44. Chacko B, Whitley M, Beckmann U, Murray K, Rowley M (2018) Postoperative euglycaemic diabetic ketoacidosis associated with sodium-glucose cotransporter-2 inhibitors (gliflozins): a report of two cases and review of the literature. Anaesth Intensive Care 46(2):215–219. https://doi.org/10.1177/0310057X1804600212

    Article  CAS  PubMed  Google Scholar 

  45. Milder DA, Milder TY, Kam PCA (2018) Sodium-glucose co-transporter type-2 inhibitors: pharmacology and peri-operative considerations. Anaesthesia. 73(8):1008–1018. https://doi.org/10.1111/anae.14251

    Article  CAS  PubMed  Google Scholar 

  46. Burke KR, Schumacher CA, Harpe SE (2017) SGLT2 inhibitors: a systematic review of diabetic ketoacidosis and related risk factors in the primary literature. Pharmacotherapy. 37(2):187–194. https://doi.org/10.1002/phar.1881

    Article  PubMed  Google Scholar 

  47. Kameda Y, Kato M, Inoue B, Yamazaki S, Sahara N, Aoki T, Nagashima Y, Nemoto N, Anzai H, Araki W, Kobayashi N. [Euglycemic diabetic ketoacidosis caused by a sodium-glucose co-transporter (SGLT) 2 inhibitor after coronary artery bypass grafting]. Kyobu Geka. 2019 May;72(5):354–357. Japanese.

  48. Jardiance [package insert]. Ridgefield, CT: Boehringer Ingelheim Pharmaceuticals, Inc; 2015

  49. Handelsman Y, Henry RR, Bloomgarden ZT, Dagogo-Jack S, DeFronzo RA, Einhorn D, Ferrannini E, Fonseca VA, Garber AJ, Grunberger G, LeRoith D, Umpierrez GE, Weir MR (2016) American Association of Clinical Endocrinologists and American College of Endocrinology position statement on the association of SGLT-2 inhibitors and diabetic ketoacidosis. Endocr Pract 22(6):753–762. https://doi.org/10.4158/EP161292.PS

    Article  PubMed  Google Scholar 

  50. Hayami T, Kato Y, Kamiya H, Kondo M, Naito E, Sugiura Y, Kojima C, Sato S, Yamada Y, Kasagi R, Ando T, Noda S, Nakai H, Takada E, Asano E, Motegi M, Watarai A, Kato K, Nakamura J (2015) Case of ketoacidosis by a sodium-glucose cotransporter 2 inhibitor in a diabetic patient with a low-carbohydrate diet. J Diabetes Investig 6(5):587–590. https://doi.org/10.1111/jdi.12330

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bravata DM, Sanders L, Huang J, et al. Efficacy and safety of low-carbohydrate diets: a systematic review. 2003. In: Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. York (UK): Centre for Reviews and Dissemination (UK); 1995-Available from: https://www.ncbi.nlm.nih.gov/books/NBK69697/

  52. Shah P, Isley WL (2006) Ketoacidosis during a low-carbohydrate diet. N Engl J Med 354:97–98

    Article  CAS  Google Scholar 

  53. Joseph F, Anderson L, Goenka N, Vora J. Starvation induced true diabetic euglycemic ketoacidosis in severe depression. J Gen Intern Med.2009; 24: 129–131. (https://doi.org/10.1007/s11606-008-0829-0) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  54. Baraona E, Lieber CS (1979 Mar) Effects of ethanol on lipid metabolism. J Lipid Res 20(3):289–315

    Article  CAS  Google Scholar 

  55. McGuire LC, Cruickshank AM, Munro PT (2006) Alcoholic ketoacidosis. Emerg Med J 23(6):417–420. https://doi.org/10.1136/emj.2004.017590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Prater J, Chaiban J. Euglycemic diabetic ketoacidosis with acute pancreatitis in a patient not known to have diabetes. Endocr Pract. 2015; 1 e88–e91. (https://doi.org/10.4158/ep14182.cr) [CrossRef] [Google Scholar]

  57. Abdin AA, Hamza M, Khan MS, Ahmed A. 2016. Euglycemic diabetic ketoacidosis in a patient with cocaine intoxication. Case Rep Crit Care. 2016; Article ID: 4275651. (https://doi.org/10.1155/2016/4275651) [PMC free article] [PubMed] [CrossRef] [Google Scholar]

  58. Dharmalingam M, Yamasandhi PG (2018) Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J Endocrinol Metab 22(3):421–428. https://doi.org/10.4103/ijem.IJEM_585_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuchay MS, Krishan S, Mishra SK, Farooqui KJ, Singh MK, Wasir SJ et al (2018) Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT trial). Diabetes Care 41(8):1801–1808

    Article  CAS  Google Scholar 

  60. Finucane FM (2018) SGLT2 inhibitor-induced euglycaemic diabetic ketoacidosis may be due to abrupt, severe and transient impaired glucose sensing in susceptible individuals with a hitherto unrecognised beta cell SGLT variant. Med Hypotheses 114:11–12. https://doi.org/10.1016/j.mehy.2018.02.025

    Article  CAS  PubMed  Google Scholar 

  61. Saponaro C, Mühlemann M, Acosta-Montalvo A, Piron A, Gmyr V, Delalleau N, Moerman E, Thévenet J, Pasquetti G, Coddeville A, Cnop M, Kerr-Conte J, Staels B, Pattou F, Bonner C (2020) Interindividual heterogeneity of SGLT2 expression and function in human pancreatic islets. Diabetes. 69(5):902–914. https://doi.org/10.2337/db19-0888

    Article  CAS  PubMed  Google Scholar 

  62. Hodson DJ, Rorsman P (2020) A variation on the theme: SGLT2 inhibition and glucagon secretion in human islets. Diabetes 69(5):864–866. https://doi.org/10.2337/dbi19-0035

    Article  CAS  PubMed  Google Scholar 

  63. Rehman A, Setter SM, Vue MH (2011) Drug-induced glucose alterations part 2: drug-induced hyperglycemia. Diabetes Spectr 24(4):234–238. https://doi.org/10.2337/diaspect.24.4.234

    Article  Google Scholar 

  64. Luna B, Feinglos MN (2001) Drug-induced hyper-glycemia. JAMA 286:1945–1948

    Article  CAS  Google Scholar 

  65. Clore JN, Thurby-Hay L (2009) Glucocorticoid-induced hyperglycemia. Endocr Pract 15(5):469–474. https://doi.org/10.4158/EP08331.RAR

    Article  PubMed  Google Scholar 

  66. Cooper-DeHoff RM, Wen S, Beitelshees AL, Zineh I, Gums JG, Turner ST et al (2020) Impact of abdominal obesity on incidence of adverse metabolic effects associated with antihypertensive medications. Hypertension. 55:61–68

    Article  Google Scholar 

  67. Scheen AJ, De Hert MA (2007) Abnormal glucose metabolism in patients treated with antipsychotics. Diabetes Metab 33:169–175

    Article  CAS  Google Scholar 

  68. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents [article online]. Available from http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 22 April 2011

  69. Nyenwe EA, Loganathan RS, Blum S, Ezuteh DO, Erani DM, Wan JY, Palace MR, Kitabchi AE (2007) Active use of cocaine: an independent risk factor for recurrent diabetic ketoacidosis in a city hospital. Endocr Pract 13(1):22–29. https://doi.org/10.4158/EP.13.1.22

    Article  PubMed  Google Scholar 

  70. Tomihira M, Kawasaki E, Nakajima H, Imamura Y, Sato Y, Sata M, Kage M, Sugie H, Nunoi K (2004) Intermittent and recurrent hepatomegaly due to glycogen storage in a patient with type 1 diabetes: genetic analysis of the liver glycogen phosphorylase gene (PYGL). Diabetes Res Clin Pract 65(2):175–182. https://doi.org/10.1016/j.diabres.2003.12.004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AOB came up with the idea for the study and wrote the first draft of the manuscript. IOO assisted with the literature search. IOO and AC made contributions to the writing and revision of the manuscript. AC critically revised the manuscript for intellectual content. All authors approved the final draft of the work.

Corresponding author

Correspondence to Adeboye Olakunle Bamgboye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamgboye, A.O., Oni, I.O. & Collier, A. Predisposing factors for the development of diabetic ketoacidosis with lower than anticipated glucose levels in type 2 diabetes patients on SGLT2-inhibitors: a review. Eur J Clin Pharmacol 77, 651–657 (2021). https://doi.org/10.1007/s00228-020-03051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-020-03051-3

Keywords

Navigation